Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Am J Med Genet A ; 194(7): e63559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421105

ABSTRACT

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.


Subject(s)
Haploinsufficiency , Language Development Disorders , Humans , Male , Female , Haploinsufficiency/genetics , Language Development Disorders/genetics , Language Development Disorders/pathology , Language Development Disorders/physiopathology , Child, Preschool , Child , Infant , Phenotype , Genetic Predisposition to Disease
2.
Mamm Biol ; 102(4): 1373-1387, 2022.
Article in English | MEDLINE | ID: mdl-36998433

ABSTRACT

Social structuring from assortative associations may affect individual fitness, as well as population-level processes. Gaining a broader understanding of social structure can improve our knowledge of social evolution and inform wildlife conservation. We investigated association patterns and community structure of female Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia, assessing the role of kinship, shared culturally transmitted foraging techniques, and habitat similarity based on water depth. Our results indicated that associations are influenced by a combination of uni- and biparental relatedness, cultural behaviour and habitat similarity, as these were positively correlated with a measure of dyadic association. These findings were matched in a community level analysis. Members of the same communities overwhelmingly shared the same habitat and foraging techniques, demonstrating a strong homophilic tendency. Both uni- and biparental relatedness between dyads were higher within than between communities. Our results illustrate that intraspecific variation in sociality in bottlenose dolphins is influenced by a complex combination of genetic, cultural, and environmental aspects. Supplementary Information: The online version contains supplementary material available at 10.1007/s42991-022-00259-x.

3.
Ecol Evol ; 9(12): 6986-6998, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380027

ABSTRACT

Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits.

4.
J Thorac Dis ; 10(4): 2456-2460, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29850152

ABSTRACT

Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era.

6.
Mol Ecol ; 25(12): 2735-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27015516

ABSTRACT

The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model-testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic 'offshore' dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free-ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well-supported clade of Indo-Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.


Subject(s)
Bottle-Nosed Dolphin/genetics , Genetics, Population , Reproductive Isolation , Animals , Bayes Theorem , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Fisheries , Gene Flow , Microsatellite Repeats , Models, Genetic , Phylogeny , Western Australia
7.
G3 (Bethesda) ; 5(9): 1815-26, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26134496

ABSTRACT

Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies.


Subject(s)
Genetic Variation , Genetics, Population , Models, Genetic , Pedigree , Reproduction/genetics , Alleles , Computer Simulation , DNA, Mitochondrial , Gene Frequency , Genetic Loci , Genetic Markers , Internet
8.
Ecol Lett ; 17(12): 1545-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25270393

ABSTRACT

Newly discovered non-genetic mechanisms break the link between genes and inheritance, thereby also raising the possibility that previous mating partners could influence traits in offspring sired by subsequent males that mate with the same female ('telegony'). In the fly Telostylinus angusticollis, males transmit their environmentally acquired condition via paternal effects on offspring body size. We manipulated male condition, and mated females to two males in high or low condition in a fully crossed design. Although the second male sired a large majority of offspring, offspring body size was influenced by the condition of the first male. This effect was not observed when females were exposed to the first male without mating, implicating semen-mediated effects rather than female differential allocation based on pre-mating assessment of male quality. Our results reveal a novel type of transgenerational effect with potential implications for the evolution of reproductive strategies.


Subject(s)
Body Size , Diptera/physiology , Inheritance Patterns , Animals , Female , Male , Phenotype , Semen/physiology , Sexual Behavior, Animal
9.
PLoS One ; 9(7): e101427, 2014.
Article in English | MEDLINE | ID: mdl-24988113

ABSTRACT

Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins ('snubfin' and 'humpback dolphins', hereafter) of north-western Australia. While both species are listed as 'near threatened' by the IUCN, data deficiencies are impeding rigorous assessment of their conservation status across Australia. Understanding the genetic structure of populations, including levels of gene flow among populations, is important for the assessment of conservation status and the effective management of a species. Using nuclear and mitochondrial DNA markers, we assessed population genetic diversity and differentiation between snubfin dolphins from Cygnet (n = 32) and Roebuck Bays (n = 25), and humpback dolphins from the Dampier Archipelago (n = 19) and the North West Cape (n = 18). All sampling locations were separated by geographic distances >200 km. For each species, we found significant genetic differentiation between sampling locations based on 12 (for snubfin dolphins) and 13 (for humpback dolphins) microsatellite loci (FST = 0.05-0.09; P<0.001) and a 422 bp sequence of the mitochondrial control region (FST = 0.50-0.70; P<0.001). The estimated proportion of migrants in a population ranged from 0.01 (95% CI 0.00-0.06) to 0.13 (0.03-0.24). These are the first estimates of genetic diversity and differentiation for snubfin and humpback dolphins in Western Australia, providing valuable information towards the assessment of their conservation status in this rapidly developing region. Our results suggest that north-western Australian snubfin and humpback dolphins may exist as metapopulations of small, largely isolated population fragments, and should be managed accordingly. Management plans should seek to maintain effective population size and gene flow. Additionally, while interactions of a socio-sexual nature between these two species have been observed previously, here we provide strong evidence for the first documented case of hybridisation between a female snubfin dolphin and a male humpback dolphin.


Subject(s)
Dolphins/genetics , Animals , DNA, Mitochondrial/genetics , Dolphins/physiology , Female , Gene Flow , Genetic Variation , Genetics, Population , Hybridization, Genetic , Male , Microsatellite Repeats , Population Density , Population Dynamics , Western Australia
10.
Proc Biol Sci ; 281(1784): 20140374, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24759862

ABSTRACT

Culturally transmitted tool use has important ecological and evolutionary consequences and has been proposed as a significant driver of human evolution. Such evidence is still scarce in other animals. In cetaceans, tool use has been inferred using indirect evidence in one population of Indo-Pacific bottlenose dolphins (Tursiops sp.), where particular dolphins ('spongers') use marine sponges during foraging. To date, evidence of whether this foraging tactic actually provides access to novel food items is lacking. We used fatty acid (FA) signature analysis to identify dietary differences between spongers and non-spongers, analysing data from 11 spongers and 27 non-spongers from two different study sites. Both univariate and multivariate analyses revealed significant differences in FA profiles between spongers and non-spongers between and within study sites. Moreover, FA profiles differed significantly between spongers and non-spongers foraging within the same deep channel habitat, whereas the profiles of non-spongers from deep channel and shallow habitats at this site could not be distinguished. Our results indicate that sponge use by bottlenose dolphins is linked to significant differences in diet. It appears that cultural transmission of tool use in dolphins, as in humans, allows the exploitation of an otherwise unused niche.


Subject(s)
Appetitive Behavior , Dolphins/physiology , Tool Use Behavior , Adipose Tissue/chemistry , Animals , Culture , Diet , Fatty Acids/metabolism , Female , Male , Porifera , Western Australia
11.
Proc Biol Sci ; 281(1782): 20133245, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24648223

ABSTRACT

Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Western Australia. We argue that vertical social transmission in different habitats has led to significant geographical genetic structure of mitochondrial DNA (mtDNA) haplotypes. Dolphins with mtDNA haplotypes E or F are found predominantly in deep (more than 10 m) channel habitat, while dolphins with a third haplotype (H) are found predominantly in shallow habitat (less than 10 m), indicating a strong haplotype-habitat correlation. Some dolphins in the deep habitat engage in a foraging strategy using tools. These 'sponging' dolphins are members of one matriline, carrying haplotype E. This pattern is consistent with what had been demonstrated previously at another research site in Shark Bay, where vertical social transmission of sponging had been shown using multiple lines of evidence. Using an individual-based model, we found support that in western Shark Bay, socially transmitted specializations may have led to the observed genetic structure. The reported genetic structure appears to present an example of cultural hitchhiking of mtDNA haplotypes on socially transmitted foraging strategies, suggesting that, as in humans, genetic structure can be shaped through cultural transmission.


Subject(s)
Bottle-Nosed Dolphin/genetics , Bottle-Nosed Dolphin/psychology , Cooperative Behavior , Feeding Behavior , Genetics, Population , Animals , DNA, Mitochondrial/genetics , Ecosystem , Haplotypes , Western Australia
12.
Proc Biol Sci ; 277(1694): 2667-73, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20392729

ABSTRACT

In wild populations, inbreeding tolerance is expected to evolve where the cost of avoidance exceeds that of tolerance. We show that in a wild population of bottlenose dolphins found in East Shark Bay, Western Australia, levels of inbreeding are higher than expected by chance alone, and demonstrate that inbreeding is deleterious to female fitness in two independent ways. We found that inbred females, and females with inbred calves, have reduced fitness (lower calving success). We further show that one of the costs of inbreeding is extended weaning age, and that females' earlier calves are more likely to be inbred. While the exact causes of inbreeding remain obscure, our results indicate that one factor is female age, and thus experience. Any inbreeding avoidance mechanisms such as female evasion of kin, or male dispersal, do not seem to be completely effective in this population, which supports the view that inbreeding avoidance does not always evolve wherever inbreeding incurs a cost.


Subject(s)
Bottle-Nosed Dolphin/genetics , Inbreeding , Sexual Behavior, Animal , Age Factors , Animals , Bottle-Nosed Dolphin/physiology , Female , Genotype , Male , Reproduction/physiology , Weaning
13.
Mol Ecol Resour ; 9(2): 531-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-21564684

ABSTRACT

We isolated and characterized 19 novel tetranucleotide microsatellite markers in the Indo-Pacific bottlenose dolphin (Tursiops aduncus) in order to improve genotyping accuracy in applications like large-scale population-wide paternity and relatedness assessments. One hundred T. aduncus from Shark Bay, Western Australia, were screened for polymorphism. Cross-amplification was tested on four other small odontocete species. The new tetranucleotide microsatellite loci showed a more than fourfold higher scoring accuracy and significantly lower stutter formation compared to eight dinucleotide loci, although overall allelic diversity was significantly reduced.

SELECTION OF CITATIONS
SEARCH DETAIL
...