Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0297153, 2024.
Article in English | MEDLINE | ID: mdl-38236942

ABSTRACT

Repeated measurements of crop height to observe plant growth dynamics in real field conditions represent a challenging task. Although there are ways to collect data using sensors on UAV systems, proper data processing and analysis are the key to reliable results. As there is need for specialized software solutions for agricultural research and breeding purposes, we present here a fast algorithm ALFA for the processing of UAV LiDAR derived point-clouds to extract the information on crop height at many individual cereal field-plots at multiple time points. Seven scanning flights were performed over 3 blocks of experimental barley field plots between April and June 2021. Resulting point-clouds were processed by the new algorithm ALFA. The software converts point-cloud data into a digital image and extracts the traits of interest-the median crop height at individual field plots. The entire analysis of 144 field plots of dimension 80 x 33 meters measured at 7 time points (approx. 100 million LiDAR points) takes about 3 minutes at a standard PC. The Root Mean Square Deviation of the software-computed crop height from the manual measurement is 5.7 cm. Logistic growth model is fitted to the measured data by means of nonlinear regression. Three different ways of crop-height data visualization are provided by the software to enable further analysis of the variability in growth parameters. We show that the presented software solution is a fast and reliable tool for automatic extraction of plant height from LiDAR images of individual field-plots. We offer this tool freely to the scientific community for non-commercial use.


Subject(s)
Hordeum , Plant Breeding , Software , Algorithms , Agriculture/methods
2.
Front Plant Sci ; 14: 1131326, 2023.
Article in English | MEDLINE | ID: mdl-36959950

ABSTRACT

Increasing crop productivity under optimal conditions and mitigating yield losses under stressful conditions is a major challenge in contemporary agriculture. We have recently identified an effective anti-senescence compound (MTU, [1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea]) in in vitro studies. Here, we show that MTU delayed both age- and stress-induced senescence of wheat plants (Triticum aestivum L.) by enhancing the abundance of PSI supercomplex with LHCa antennae (PSI-LHCa) and promoting the cyclic electron flow (CEF) around PSI. We suppose that this rarely-observed phenomenon blocks the disintegration of photosynthetic apparatus and maintains its activity as was reflected by the faster growth rate of wheat in optimal conditions and under drought and heat stress. Our multiyear field trial analysis further shows that the treatment with 0.4 g ha-1 of MTU enhanced average grain yields of field-grown wheat and barley (Hordeum vulgare L.) by 5-8%. Interestingly, the analysis of gene expression and hormone profiling confirms that MTU acts without the involvement of cytokinins or other phytohormones. Moreover, MTU appears to be the only chemical reported to date to affect PSI stability and activity. Our results indicate a central role of PSI and CEF in the onset of senescence with implications in yield management at least for cereal species.

4.
J Agric Food Chem ; 70(23): 7288-7301, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35658447

ABSTRACT

Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (1), 6-(2-hydroxybenzylamino)purine mesylate (2), 6-(3-hydroxybenzylamino)purine mesylate (3), and 6-(3-methoxybenzylamino)purine mesylate (4)─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs. The new salts significantly reduced chlorophyll degradation and impairment of photosystem II functionality in barley leaf segments undergoing artificial senescence and had pronounced effects on the leaves' endogenous CK pools, maintaining high concentrations of functional metabolites for several days, unlike canonical CKs. A foliar treatment with 1 and 3 increased the harvest yield of spring barley by up to 8% when compared to treatment with the parent CKs while also increasing the number of productive tillers. This effect was attributed to the higher bioavailability of the mesylate salts and the avoidance of dimethyl sulfoxide exposure.


Subject(s)
Cytokinins , Hordeum , Cytokinins/metabolism , Cytokinins/pharmacology , Hordeum/metabolism , Mesylates/metabolism , Photosynthesis , Plant Leaves/metabolism , Salts , Water/metabolism
5.
J Exp Bot ; 72(2): 355-370, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32945834

ABSTRACT

Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins. Here, we describe the synthesis and biological activities of new CKX inhibitors derived mainly from diphenylurea. They were tested on four CKX isoforms from maize and Arabidopsis, where the best compounds showed IC50 values in the 10-8 M concentration range. The binding mode of the most efficient inhibitors was characterized from high-resolution crystal complexed structures. Although these compounds do not possess intrinsic cytokinin activity, we have demonstrated their tremendous potential for use in the plant tissue culture industry as well as in agriculture. We have identified a key substance, compound 19, which not only increases stress resistance and seed yield in Arabidopsis, but also improves the yield of wheat, barley and rapeseed grains under field conditions. Our findings reveal that modulation of cytokinin levels via CKX inhibition can positively affect plant growth, development and yield, and prove that CKX inhibitors can be an attractive target in plant biotechnology and agriculture.


Subject(s)
Arabidopsis , Oxidoreductases , Biotechnology , Cytokinins
6.
ACS Chem Biol ; 15(7): 1949-1963, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32520524

ABSTRACT

Cytokinins are plant hormones with biological functions ranging from coordination of plant growth to the regulation of biotic and abiotic stress-related responses and senescence. The components of the plant immune system can learn from past elicitations by microbial pathogens and herbivores and adapt to new threats. It is known that plants can enter the primed state of enhanced defense induced by either natural or synthetic compounds. While the involvement of cytokinins in defense priming has been documented, no comprehensive model of their action has been provided to date. Here, we report the functional characterization of two aromatic cytokinin derivatives, 6-benzylaminopurine-9-arabinosides (BAPAs), 3-methoxy-BAPA and 3-hydroxy-BAPA, that proved to be effective in delaying senescence in detached leaves while having low interactions with the cytokinin pathway. An RNA-seq profiling study on Arabidopsis leaves treated with 3-methoxy-BAPA revealed that short and extended treatments with this compound shifted the transcriptional response markedly toward defense. Both treatments revealed upregulation of genes involved in processes associated with plant innate immunity such as cell wall remodeling and upregulation of specific MAP kinases, most importantly MPK11, which is a MAPK module involved in stress-related signaling during the pathogen-associated molecular patterns (PAMPs) response. In addition, elevated levels of JA and its metabolites, jasmonate/ethylene-driven upregulation of PLANT DEFENSIN 1.2 (PDF1.2) and other defensins, and also temporarily elevated levels of reactive oxygen species marked the plant response to 3-methoxy-BAPA treatment. Synergistic interactions were observed when plants were cotreated with 3-hydroxy-BAPA and the flagellin-derived bacterial PAMP peptide (flg22), leading to the enhanced expression of the PAMP-triggered immunity (PTI) marker gene FRK1. Our data collectively show that some BAPAs can sensitively prime the PTI responses in a low micromolar range of concentrations while having no observable negative effects on the overall fitness of the plant.


Subject(s)
Arabinonucleosides/pharmacology , Cytokinins/pharmacology , Plant Immunity/drug effects , Plant Leaves/drug effects , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabinonucleosides/chemistry , Cytokinins/chemistry , Gene Expression Regulation, Plant/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Molecular Structure , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Structure-Activity Relationship
7.
Bioorg Med Chem ; 24(3): 484-92, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26719210

ABSTRACT

Plant hormones cytokinins regulate various aspects of plant growth and development. For their positive effects on branching, delaying of senescence, nutrient remobilisation, flower and seed set control they became interesting substances in search for potential agrochemicals. From the 1970' of the last century exogenous application of cytokinins have been tested in field conditions to improve yield traits of world-wide important crops such as wheat, rice, maize, barley, and soybean. Despite the extensive testing summarized in this work, so far cytokinins haven't found their stable place among commercialized plant growth regulators, mainly due to the complexity of their effects. Here we bring an overview of the outcomes obtained in pot and field experiments using cytokinin exogenous treatments, summarize the ways of application and point to the affected traits in various field crops, vegetables, cotton and fruit trees. Further, we present here outcomes of field trials performed with a derivative of N(6)-benzyladenine, 2-chloro-6-(3-methoxybenzyl)aminopurine, in spring barley and winter wheat. The effect on yield forming traits such as number of tillers, grains per ear, number of ears and the final yield was evaluated and compared after spraying of the both crops in different phenological stages.


Subject(s)
Agrochemicals/pharmacology , Cytokinins/pharmacology , Plant Growth Regulators/pharmacology , Plants/drug effects , Plants/metabolism
8.
N Biotechnol ; 32(6): 739-46, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-25639197

ABSTRACT

Ergot alkaloids are widely used in the pharmaceutical industry in drug preparations for treating migraines and Parkinson's disease, inducing uterine contraction, and other purposes. Phytopathogenic fungi of the genus Claviceps (e.g. C. purpurea) comprise a major biological source of ergot alkaloids. Worldwide industrial production of these alkaloids derives almost equally from two biotechnological procedures: submerged culture of the fungus in fermenters and field parasitic production in dormant fungal organs known as sclerotia (also termed ergot). Ergot yields from field cultivation are greatly affected by weather and also can be much reduced by pollen contamination from imperfectly male-sterile rye, as only unfertilized ovaries can be infected by C. purpurea spores. Two substances with gametocidal effect - maleic hydrazide and 2-chloroethylphosphonic acid - were tested during three consecutive seasons in small field experiments for the ability to induce or amplify the male sterility of rye as well as the impacts on germination of C. purpurea spores and general vitality of rye host plants. Maleic hydrazide was proven to be a highly effective gametocide on both a fertile rye variety and a variety with imperfectly induced cytoplasmic male sterility. It showed negligible effect on germination of C. purpurea spores. Both accurate dosaging of the active gametocidal compound and timing of the application just 2-3 weeks before onset of anthesis proved crucial to achieving high ergot yield with minimum grain impurities.


Subject(s)
Ergot Alkaloids/biosynthesis , Germ Cells, Plant/drug effects , Maleic Hydrazide/administration & dosage , Organophosphorus Compounds/administration & dosage , Plant Infertility/physiology , Secale/metabolism , Dose-Response Relationship, Drug , Ergot Alkaloids/isolation & purification , Plant Growth Regulators/pharmacology , Plant Infertility/drug effects , Secale/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...