Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 9(6): 606-616, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27916296

ABSTRACT

Bladder cancer presents as either low- or high-grade disease, each with distinct mutational profiles; however, both display prominent mTORC1 activation. One major negative regulator of mTORC1 is AMPK, which is a critical metabolic regulator that suppresses cellular growth in response to metabolic stress by negatively regulating mTORC1. Alterations in the activation and protein levels of AMPK have been reported in breast, gastric, and hepatocellular carcinoma. To investigate whether AMPK suppression is responsible for mTOR activation in bladder cancer, the levels of AMPKα were quantified in a cohort of primary human bladder cancers and adjacent nontumor tissues. The levels of p-AMPKα, AMPKα1, AMPKα2, and total AMPKα were significantly suppressed in both low- and high-grade disease when compared with nontumor tissue. To elucidate the AMPKα suppression mechanism, we focused on inflammation, particularly tumor-infiltrating macrophages, due to their reported role in regulating AMPK expression. Treatment of HTB2 cancer cells with varying doses of differentiated U937 macrophage conditioned medium (CM) demonstrated a dose-dependent reduction of AMPKα protein. Additionally, macrophage CM treatment of HTB2 and HT1376 bladder cells for various times also reduced AMPKα protein but not mRNA levels. Direct TNFα treatment also suppressed AMPKα at the protein but not RNA level. Finally, staining of the human cohort for CD68, a macrophage marker, revealed that CD68+ cell counts correlated with reduced AMPKα levels. In summary, these data demonstrate the potential role for inflammation and inflammatory cytokines in regulating the levels of AMPKα and promoting mTORC1 activation in bladder cancer.

2.
Mol Cancer Res ; 14(12): 1182-1194, 2016 12.
Article in English | MEDLINE | ID: mdl-27638620

ABSTRACT

AMP-activated protein kinase (AMPK) is the central metabolic regulator of the cell and controls energy consumption based upon nutrient availability. Due to its role in energy regulation, AMPK has been implicated as a barrier for cancer progression and is suppressed in multiple cancers. To examine whether AMPK regulates bladder cancer cell growth, HTB2 and HT1376 bladder cells were treated with an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). AICAR treatment reduced proliferation and induced the expression of p27Kip1 (CDKN1B), which was mediated through an mTOR-dependent mechanism. Interestingly, AMPKα2 knockdown resulted in reduced p27 levels, whereas AMPKα1 suppression did not. To further determine the exact mechanism by which AMPKa2 regulates p27, HTB2 and HT1376 cells were transduced with an shRNA targeting AMPKα2. Stable knockdown of AMPKα2 resulted in increased proliferation and decreased p27 protein. The reduced p27 protein was determined to be dependent upon SKP2. Additionally, loss of AMPKα2 in a xenograft and a chemical carcinogen model of bladder cancer resulted in larger tumors with less p27 protein and high SKP2 levels. Consistent with the regulation observed in the bladder cancer model systems, a comprehensive survey of human primary bladder cancer clinical specimens revealed low levels of AMPKα2 and p27 and high levels of SKP2. IMPLICATIONS: These results highlight the contribution of AMPKα2 as a mechanism for controlling bladder cancer growth by regulating proliferation through mTOR suppression and induction of p27 protein levels, thus indicating how AMPKα2 loss may contribute to tumorigenesis. Mol Cancer Res; 14(12); 1182-94. ©2016 AACR.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Ribonucleotides/pharmacology , S-Phase Kinase-Associated Proteins/metabolism , Urinary Bladder Neoplasms/metabolism , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Mice , Proteolysis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/genetics
3.
Urol Oncol ; 33(9): 387.e17-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25618296

ABSTRACT

INTRODUCTION: L-Selectin (CD62L) is a vascular adhesion molecule constitutively expressed on leukocytes with a primary function of directing leukocyte migration and homing of lymphocytes to lymph nodes. In a gene expression microarray study comparing laser-captured microdissected high-grade muscle-invasive bladder cancer (MIBC) without prior treatment and low-grade bladder cancer (LGBC) human samples, we found CD62L to be the highest differentially expressed gene. We sought to examine the differential expression of CD62L in MIBCs and its clinical relevance. METHODS: Unfixed fresh and formalin-fixed paraffin-embedded human bladder cancer specimens and serum samples were obtained from the University of Connecticut Health Center tumor bank. Tumor cells were isolated from frozen tumor tissue sections by laser-captured microdissected followed by RNA isolation. Quantitative polymerase chain reaction was used to validate the level of CD62L transcripts. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to evaluate the CD62L protein localization and expression level. Flow cytometry was used to identify the relative number of cells expressing CD62L in fresh tumor tissue. In silico studies were performed using the Oncomine database. RESULTS: Immunostaining showed a uniformly higher expression of CD62L in MIBC specimens vs. LGBCs specimens. Further, CD62L localization was seen in foci of metastatic tumor cells in lymph node specimens from patients with high-grade MIBC and known nodal involvement. Up-regulated expression of CD62L was also observed by flow cytometric analysis of freshly isolated tumor cells from biopsies of high-grade cancers vs. LGBC specimens. Circulating CD62L levels were also found to be higher in serum samples from patients with high-grade metastatic vs. high-grade nonmetastatic MIBC. In addition, in silico analysis of Oncomine Microarray Database showed a significant correlation between CD62L expression and tumor aggressiveness and clinical outcomes. CONCLUSION: These data confirm the expression of CD62L on urothelial carcinoma cells and suggest that CD62L may serve as biomarker to predict the presence of or risk for developing metastatic disease in patients with bladder cancer.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Transitional Cell/pathology , L-Selectin/biosynthesis , Urinary Bladder Neoplasms/pathology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Immunohistochemistry , L-Selectin/analysis , Laser Capture Microdissection , Male , Neoplasm Grading , Neoplasm Metastasis , Polymerase Chain Reaction , Transcriptome , Up-Regulation
4.
Genes Cancer ; 4(1-2): 3-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23946867

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic regulator that promotes energy conservation and restoration when cells are exposed to nutrient stress. Given the high metabolic requirement of cancer cells, AMPK activation has been suggested as a potential preventative and therapeutic target. However, previous findings have shown that AMPK activity is diminished in some cancers. Expression of the 2 catalytic isoforms, AMPKα1 and AMPKα2, was evaluated in primary breast cancer and matched nontumor-adjacent tissue samples using immunohistochemistry. AMPK-dependent growth signaling events were examined in primary human mammary epithelial cells (HMECs) using RNAi to understand the importance of AMPKα2 in normal growth regulation. To test whether AMPKα2 would reinstate growth control and apoptotic mechanisms in breast cancer cells, metabolic stress assays and tumor xenografts were performed in MCF-7 cells, expressing low levels of AMPKα2, with stable transfection of either green fluorescent protein (GFP) or AMPKα2 expression constructs. AMPKα2 was found to be significantly suppressed in breast cancer tissue samples, whereas AMPKα1 was not. In normal HMECs, low glucose stress resulted in AMPK-driven growth inhibition. Interestingly, this response was ablated when AMPKα2 was silenced. Metabolic stress assays in MCF-7 cells indicated that AMPKα2 expression reduced both mTOR signaling and cyclin D1 expression, contributing to G1-phase cell cycle arrest. Cells expressing AMPKα2 underwent apoptosis more readily than GFP control cells. Xenograft studies demonstrated that MCF-7 tumors expressing AMPKα2 display reduced proliferation and increased apoptotic events. Furthermore, AMPKα2 xenografts exhibited diminished cyclin D1 levels along with an increased amount of nuclear p53, thereby implicating the AMPKα2-p53 signaling axis as a mediator of cell apoptosis. Together, these results highlight the significance of reduced AMPK activity contributing to human carcinogenesis and, specifically, the role of AMPKα2 with respect to its control of normal mammary epithelial cell growth and its reduced expression in breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...