Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Spinal Cord Med ; 37(1): 54-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24090088

ABSTRACT

OBJECTIVE: To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. METHODS: In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. RESULTS: Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2-3 grades), ankle dorsiflexors (1-2 grades), long toe extensors (1-2 grades), and plantar flexors (0-2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. CONCLUSION: Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold.


Subject(s)
Bone Marrow Cells/physiology , Cell Transplantation/methods , Chitosan/therapeutic use , Laminin/therapeutic use , Mesenchymal Stem Cells/physiology , Nerve Regeneration , Peripheral Nerves/physiology , Spinal Cord Injuries/surgery , Adolescent , Adult , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Recovery of Function , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...