Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(30): 27519-27533, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546645

ABSTRACT

New ß-stabilized Ti-based alloys are highly promising for bone implants, thanks in part to their low elasticity. The nature of this elasticity, however, is as yet unknown. We here present combined first-principles DFT calculations and experiments on the microstructure, structural stability, mechanical characteristics, and electronic structure to elucidate this origin. Our results suggest that the studied ß Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufactured by the electron-beam powder bed fusion (E-PBF) method has homogeneous mechanical properties (H = 2.01 ± 0.22 GPa and E = 69.48 ± 0.03 GPa) along the building direction, which is dictated by the crystallographic texture and microstructure morphologies. The analysis of the structural and electronic properties, as the main factors dominating the chemical bonding mechanism, indicates that TNZT has a mixture of strong metallic and weak covalent bonding. Our calculations demonstrate that the softening in the Cauchy pressure (C' = 98.00 GPa) and elastic constant C̅44 = 23.84 GPa is the origin of the low elasticity of TNZT. Moreover, the nature of this softening phenomenon can be related to the weakness of the second and third neighbor bonds in comparison with the first neighbor bonds in the TNZT. Thus, the obtained results indicate that a carefully designed TNZT alloy can be an excellent candidate for the manufacturing of orthopedic internal fixation devices. In addition, the current findings can be used as guidance not only for predicting the mechanical properties but also the nature of elastic characteristics of the newly developed alloys with yet unknown properties.

2.
Materials (Basel) ; 16(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37445133

ABSTRACT

The ß-type Ti-42Nb alloy has been successfully manufactured from pre-alloyed powder using the E-PBF method for the first time. This study presents thorough microstructural investigations employing diverse methodologies such as EDS, XRD, TEM, and EBSD, while mechanical properties are assessed using UPT, nanoindentation, and compression tests. Microstructural analysis reveals that Ti-42Nb alloy primarily consisted of the ß phase with the presence of a small amount of nano-sized α″-martensite formed upon fast cooling. The bimodal-grained microstructure of Ti-42Nb alloy comprising epitaxially grown fine equiaxed and elongated equiaxed ß-grains with an average grain size of 40 ± 28 µm exhibited a weak texture. The study shows that the obtained microstructure leads to improved mechanical properties. Young's modulus of 78.69 GPa is significantly lower than that of cp-Ti and Ti-6Al-4V alloys. The yield strength (379 MPa) and hardness (3.2 ± 0.5 GPa) also meet the criteria and closely approximate the values typical of cortical bone. UPT offers a reliable opportunity to study the nature of the ductility of the Ti-42Nb alloy by calculating its elastic constants. XPS surface analysis and electrochemical experiments demonstrate that the better corrosion resistance of the alloy in SBF is maintained by the dominant presence of TiO2 and Nb2O5. The results provide valuable insights into the development of novel low-modulus Ti-Nb alloys, which are interesting materials for additive-manufactured implants with the desired properties required for their biomedical applications.

3.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175723

ABSTRACT

We suggest a novel approach for searching natural compounds with anti-aging and rejuvenation potential using cell cultures, with a high potential for the further in vivo applications. The present paper discusses ways of defining age for cell populations with large numbers of cells and suggests a method of assessing how young or old a cell population is based on a cell age profile approach. This approach uses experimental distributions of the cells over the cell cycle stages, acquired using flow cytometry. This paper discusses how such a profile should evolve under homeostatic maintenance of cell numbers in the proliferation niches. We describe promising results from experiments on a commercial substance claiming rejuvenating and anti-aging activity acting upon the cultures of human mononuclear cells and dermal fibroblasts. The chosen substance promotes a shift towards larger proportion of cells in synthesis and proliferation stages, and increases cell culture longevity. Further, we describe promising in vivo testing results of a selected food supplement. Based on the described concept of cell age profile and available test results, a strategy to search for natural compounds with regenerative, anti-aging and rejuvenation potential is suggested and proposed for wider and thorough testing. Proposed methodology of age assessment is rather generic and can be used for quantitative assessment of the anti-aging and rejuvenation potential of different interventions. Further research aimed at the tests of the suggested strategy using more substances and different interventions, and the thorough studies of molecular mechanisms related to the action of the substance used for testing the suggested search methodology, are needed.


Subject(s)
Aging , Cellular Senescence , Humans , Longevity , Rejuvenation , Cell Division
4.
Materials (Basel) ; 14(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34501001

ABSTRACT

Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones.

5.
Materials (Basel) ; 14(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206071

ABSTRACT

Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control, which can prevent their successful application. In fact, the optimization of the AM process is impossible without considering structural characteristics as manufacturing accuracy, internal defects, as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of X-ray computed tomography (XCT). Several advanced image analysis workflows are presented to evaluate the effect of build orientation on wall thicknesses distribution, wall degradation, and surface roughness reduction due to the chemical etching of TPMSS. It is shown that the manufacturing accuracy differs for the structural elements printed parallel and orthogonal to the manufactured layers. Different strategies for chemical etching show different powder removal capabilities and both lead to the loss of material and hence the gradient of the wall thickness. This affects the mechanical performance under compression by reduction of the yield stress. The positive effect of the chemical etching is the reduction of the surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of retained powder with the pore size of the functionally graded TPMSS, which can further improve the manufacturing process.

6.
Materials (Basel) ; 14(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072673

ABSTRACT

In this work, a highly alloyed cold work tool steel, Uddeholm Vanadis 4 Extra, was manufactured via the electron beam melting (EBM) technique. The corresponding material microstructure and carbide precipitation behavior as well as the microstructural changes after heat treatment were characterized, and key mechanical properties were investigated. In the as-built condition, the microstructure consists of a discontinuous network of very fine primary Mo- and V-rich carbides dispersed in an auto-tempered martensite matrix together with ≈15% of retained austenite. Adjusted heat treatment procedures allowed optimizing the microstructure by the elimination of Mo-rich carbides and the precipitation of fine and different sized V-rich carbides, along with a decrease in the retained austenite content below 2%. Hardness response, compressive strength, and abrasive wear properties of the EBM-manufactured material are similar or superior to its as-HIP forged counterparts manufactured using traditional powder metallurgy route. In the material as built by EBM, an impact toughness of 16-17 J was achieved. Hot isostatic pressing (HIP) was applied in order to further increase ductility and to investigate its impact upon the microstructure and properties of the material. After HIPing with optimized protocols, the ductility increased over 20 J.

7.
Sensors (Basel) ; 21(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067759

ABSTRACT

This paper presents the concept, design, construction, and validation of a novel probe based on the hexadic disposition of six pressure sensors suitable for measuring triaxial stress states inside bulky soft materials. The measurement of triaxial stress states inside bulk materials such as brain tissue surrogates is a challenging task needed to investigate internal organs' stress states and validate FE models. The purpose of the work was the development and validation of a 17 × 17 × 17 mm probe containing six pressure sensors. To do so, six piezoresistive pressure sensors of 6 mm diameter were arranged into an hexad at three cartesian axes and bisecting angles, based on the analytical solution of the stress tensor. The resulting probe was embedded in a soft silicone rubber of known characteristics, calibrated under cyclic compression and shear in three orientations, and statically validated with combined loads. A calibration matrix was computed, and validation tests allowed us to estimate Von Mises stress under combined stress with an error below 6%. Hence, the proposed probe design and method can give indications about the complex stress state developing internally to soft materials under triaxial high-strain fields, opening applications in the analysis of biological models or physical surrogates involving parenchyma organs.

8.
Materials (Basel) ; 14(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672909

ABSTRACT

The term "critical raw materials" (CRMs) refers to various metals and nonmetals that are crucial to Europe's economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.

9.
Int J Mol Sci ; 23(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35008562

ABSTRACT

Titanium alloy (Ti6Al4V) is one of the most prominent biomaterials for bone contact because of its ability to bear mechanical loading and resist corrosion. The success of Ti6Al4V implants depends on bone formation on the implant surface. Hence, implant coatings which promote adhesion, proliferation and differentiation of bone-forming cells are desirable. One coating strategy is by adsorption of biomacromolecules. In this study, Ti6Al4V substrates produced by additive manufacturing (AM) were coated with whey protein isolate (WPI) fibrils, obtained at pH 2, and heparin or tinzaparin (a low molecular weight heparin LMWH) in order to improve the proliferation and differentiation of bone-forming cells. WPI fibrils proved to be an excellent support for the growth of human bone marrow stromal cells (hBMSC). Indeed, WPI fibrils were resistant to sterilization and were stable during storage. This WPI-heparin-enriched coating, especially the LMWH, enhanced the differentiation of hBMSC by increasing tissue non-specific alkaline phosphatase (TNAP) activity. Finally, the coating increased the hydrophilicity of the material. The results confirmed that WPI fibrils are an excellent biomaterial which can be used for biomedical coatings, as they are easily modifiable and resistant to heat treatments. Indeed, the already known positive effect on osteogenic integration of WPI-only coated substrates has been further enhanced by a simple adsorption procedure.


Subject(s)
Alloys/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Heparin/pharmacology , Hydrophobic and Hydrophilic Interactions/drug effects , Mesenchymal Stem Cells/drug effects , Titanium/pharmacology , Whey Proteins/pharmacology , Adult , Alkaline Phosphatase/metabolism , Biocompatible Materials/pharmacology , Bone and Bones/drug effects , Bone and Bones/metabolism , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Humans , Male , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects
10.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899166

ABSTRACT

The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils' high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.


Subject(s)
Alloys/chemistry , Cell Differentiation , Collagen/chemistry , Inflammation/prevention & control , Osseointegration , Osteoblasts/cytology , Osteogenesis , Titanium/chemistry , Animals , Cell Proliferation , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Humans , Mice , Osteoblasts/metabolism
11.
J Sci Med Sport ; 22 Suppl 1: S78-S84, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31272916

ABSTRACT

OBJECTIVES: Aim of the work is to present the feasibility of using an Instrumented Human Head Surrogate (IHHS-1) during multidirectional impacts while wearing a modern ski helmet. The IHHS-1 is intended to provide reliable and repeatable data for the experimental validation of FE models and for the experimental evaluation of modern helmets designed to enhance the degree of protection against multidirectional impacts. DESIGN: The new IHHS-1 includes 9 triaxial MEMS accelerometers embedded in a silicone rubber brain, independently molded and presenting lobes separation and cerebellum, placed into an ABS skull filled with surrogate cerebrospinal fluid. A triaxial MEMS gyroscope is placed at the brain center of mass. Intracranial pressure can be detected by eight pressure sensors applied to the skull internal surface along a transversal plane located at the brain center of mass and two at the apex. Additional MEMS sensors positioned over the skull and the helmet allow comparison between outer and inner structure kinematics and surrogate CSF pressure behavior. METHODS: The IHHS-1 was mounted through a Hybrid III neck on a force platform and impacted with a striker connected to a pendulum tower, with the impact energies reaching 24J. Impact locations were aligned with the brain center of mass and located in the back (sagittal axis), right (90° from sagittal axis), back/right (45°), and front right (135°) locations. Following dynamic data were collected: values of the linear accelerations and angular velocities of the brain, skull and helmet; intracranial pressures inside the skull. RESULTS: Despite the relatively low intensity of impacts (HIC at skull max value 46), the skull rotational actions reached BrIC values of 0.33 and angular accelerations of 5216rad/s2, whereas brain angular acceleration resulted between 1,44 and 2,1 times lower with similar values of BrIC. CONCLUSIONS: The IHHS-1 is a physical head surrogate that can produce repeatable data for the interpretation of inner structures behavior during multidirectional impacts with or without helmets of different characteristics.


Subject(s)
Brain , Head Protective Devices , Head , Intracranial Pressure , Manikins , Sports Equipment , Biomechanical Phenomena , Craniocerebral Trauma/prevention & control , Equipment Design , Feasibility Studies , Humans , Materials Testing
12.
Biomed Eng Lett ; 9(1): 97-108, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30956883

ABSTRACT

The paper outlines the achievements and challenges in the additive manufacturing (AM) application to veterinary practice. The state-of-the-art in AM application to the veterinary surgery is presented, with the focus of AM for patient-specific implants manufacturing. It also provides critical discussion on some of the potential issues design and technology should overcome for wider and more effective implementation of additively manufactured parts in veterinary practices. Most of the discussions in present paper are related to the metallic implants, manufactured in this case using so-called powder bed additive manufacturing (PB-AM) in titanium alloy Ti-6AL-4V, and to the corresponding process of their design, manufacturing and implementation in veterinary surgery. Procedures of the implant design and individualization for veterinary surgery are illustrated basing on the four performed surgery cases with dog patients. Results of the replacement surgery in dogs indicate that individualized additively manufactured metallic implants significantly increase chances for successful recovery process, and AM techniques present a viable alternative to amputation in a large number of veterinary cases. The same time overcoming challenges of implant individualization in veterinary practice significantly contributes to the knowledge directly relevant to the modern medical practice. An experience from veterinary cases where organ-preserving surgery with 3D-printed patient-specific implants is performed provides a unique opportunity for future development of better human implants.

13.
Heliyon ; 5(2): e01188, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30839937

ABSTRACT

High Entropy Alloys (HEAs) is a novel promising class of multi-component materials which may demonstrate superior mechanical properties useful for high-temperature applications. Despite the high potential of HEAs, their production is complicated, using pre-alloyed powders in powder metallurgy route. This significantly complicates development and implementation of refractory BCC solid solution based HEAs. The present paper reports on experiments aiming at production of Al0.5CrMoNbTa0.5 multi-principle alloy using powder bed beam based additive manufacturing. Samples were manufactured using Selective Electron Beam Melting (SEBM) additive manufacturing technique from a blend of elemental powders aiming at achieving microstructure with high configurational entropy. Though it was not possible to achieve completely homogeneous microstructure, the as-printed material was composed of the zones with two multi-component solid solutions, which differed only by Al content confirming in situ alloying. The process parameters optimization was not carried out and the as-print material contained a notable amount of residual porosity. It was possible to reach lower porosity level using heat treatment at 1300 °C for 24 hours, however undesirable alloy composition changes took place. The main conclusion is that the production of the Al0.5CrMoNbTa0.5 multi-principle alloy from elemental powder blends using SEBM technique is achievable, but the process parameter optimization rather than post-process heat treatment should be performed to reduce the porosity of samples.

14.
Colloids Surf B Biointerfaces ; 176: 130-139, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30597410

ABSTRACT

In the present study, biocomposites based on 3D porous additively manufactured Ti6Al4V (Ti64) scaffolds modified with biocompatible calcium phosphate nanoparticles (CaPNPs) were investigated. Ti64 scaffolds were manufactured via electron beam melting technology using an Arcam machine. Electrophoretic deposition was used to modify the scaffolds with CaPNPs, which were synthesized by precipitation in the presence of polyethyleneimine (PEI). Dynamic light scattering revealed that the CaP/PEI nanoparticles had an average size of 46 ± 18 nm and a zeta potential of +22 ± 9 mV. Scanning electron microscopy (SEM) revealed that the obtained spherical CaPNPs had an average diameter of approximately 90 nm. The titanium-based scaffolds coated with CaPNPs exhibited improved hydrophilic surface properties, with a water contact angle below 5°. Cultivation of human mesenchymal stem cells (hMSCs) on the CaPNPs-coated Ti64 scaffolds indicated that the improved hydrophilicity was beneficial for the attachment and growth of cells in vitro. The Ti6Al4V/CaPNPs scaffold supported an increase in the alkaline phosphatase (ALP) activity of cells. In addition to the favourable cell proliferation and differentiation, Ti6Al4V/CaPNPs scaffolds displayed increased mineralization compared to non-coated Ti6Al4V scaffolds. Thus, the developed composite 3D scaffolds of Ti6Al4V functionalized with CaPNPs are promising materials for different applications related to bone repair.


Subject(s)
Calcium Phosphates/pharmacology , Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry , Titanium/pharmacology , Alloys , Calcium Phosphates/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Osteogenesis/drug effects , Particle Size , Surface Properties
15.
Materials (Basel) ; 11(5)2018 May 10.
Article in English | MEDLINE | ID: mdl-29747471

ABSTRACT

Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °Ð¡ at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

16.
Sci Rep ; 7(1): 16819, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196637

ABSTRACT

Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependent on several factors including deposition temperature, electrolyte pH and concentrations, applied potential. All of these factors directly influence the morphology, stoichiometry, crystallinity, electrochemical behaviour, and particularly the coating thickness. Coating structure together with surface micro- and nano-scale topography significantly influence early stages of the implant bio-integration. The aim of this study is to analyse the effect of pH modification on the morphology, corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite prepared by ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes with pH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale (~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosive attack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity results indicated that both coatings have a greater capacity of biomineralization, compared to the uncoated Ti64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and high biomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.

SELECTION OF CITATIONS
SEARCH DETAIL
...