Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 115: 104685, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32454236

ABSTRACT

The aim of the study was toxicological testing of an innovative and efficient antimicrobial agent based on photoactive phthalocyanine (Pc) derivative. A promising Aluminium phthalocyanine (AlPc) with efficient and stable antimicrobial effects was subjected to a battery of toxicological tests to avoid local and systemic toxicity hazard. In compliance with the current European legislation restricting the use of experimental animals, the methods comprised exclusively in vitro procedures based on cellular and tissue models of human origin or mimicking human tissues. The battery of toxicological tests to identify local toxicity included skin corrosion/irritation, eye irritation, and phototoxicity. The basic systemic toxicity tests included acute toxicity, skin sensitization, genotoxicity, and endocrine disruption. The results showed that AlPc induced skin and eye irritation, exhibited borderline sensitization potential and mutagenic potential in one test strain of the Ames test, which was not confirmed in the chromosome aberration test. The AlPc was found to be phototoxic. The results from the cytotoxicity test designed for acute oral toxicity estimation were not conclusive, the acute toxicity potential has to be determined by conventional tests in vivo. Regarding endocrine disruption, no agonistic activity of the AlPc on human estrogen receptor α, nor human androgen receptor was observed. The skin penetration/absorption test revealed that the AlPc has not penetrated into the dermis and receptor fluid, confirming no risk of systemic exposure via the bloodstream.


Subject(s)
Anti-Infective Agents/toxicity , Indoles/toxicity , Irritants/toxicity , Animals , Anti-Infective Agents/pharmacokinetics , Cells, Cultured , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , DNA Damage , Estrogen Receptor alpha/metabolism , Eye/drug effects , Humans , Indoles/pharmacokinetics , Irritants/pharmacokinetics , Isoindoles , Lymphocytes/drug effects , Mice, Inbred BALB C , Photochemical Processes , Receptors, Androgen/metabolism , Skin/drug effects , Skin/metabolism , Skin Absorption , Swine , Toxicity Tests
2.
J Photochem Photobiol B ; 138: 230-9, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-24993083

ABSTRACT

We analyzed antibacterial effects of several novel phthalocyanines against Escherichia coli and evaluated the suitability of flow cytometry for the detection of antibacterial effects of phthalocyanines in comparison with routinely used cultivation. After 3h of exposure under cool white light eight cationic phthalocyanines showed very high antibacterial activity in the concentration of 2.00 mg L(-1) and four of them were even efficient in the concentration of 0.20 mg L(-1). Antibacterial activity of neutral and anionic compounds was considerably lower or even negligible. No antibacterial effect was detected when bacteria were exposed without illumination. Binding affinity to bacterial cells was found to represent an important parameter influencing phthalocyanine antibacterial activity that can be modified by total charge of peripheral substituents and by the presence of suitable functional groups inside them. Agglomeration of cells observed in suspensions treated with a higher concentration of certain cationic phthalocyanines (the strongest binders to bacterial membrane) affected cytometric measurements of total cell counts, thus without appropriate pretreatment of the sample before analysis this parameter seems not to be fully valid in the evaluation of phthalocyanine antibacterial activity. Cytometric measurement of cell membrane integrity appears to be a suitable and even more sensitive parameter than cultivation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Indoles/pharmacology , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemistry , Flow Cytometry , Indoles/chemistry , Isoindoles , Light , Photosensitizing Agents/chemistry , Singlet Oxygen/metabolism
3.
Environ Toxicol ; 23(2): 218-23, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18214913

ABSTRACT

Phthalocyanines and their analogues show great potential as photodynamic agents producing reactive oxygen species (ROS), especially in medicine. However, their biocidal effects may also be employed to inhibit various undesirable organisms. This study explores their potential algicidal effects. The laboratory tests concern the effects of various phthalocyanine derivatives on the green alga Pseudokirchneriella subcapitata and cyanobacterium Synechococcus nidulans. Their effects on one example of the sensitive nontarget aquatic organism-crustacean Daphnia magna were also screened. Among 31 tested compounds, the cationic phthalocyanines substituted with heterocycle exhibited the strongest effects on phytoplankton species, some of them even below the level of 1 mg/L, while effects on crustaceans ranged from 3.6 to more than 50 mg/L. These results show that some phthalocyanine derivatives can act as potent algicides.


Subject(s)
Eukaryota/drug effects , Indoles/pharmacology , Animals , Chlorophyta/drug effects , Chlorophyta/growth & development , Daphnia/drug effects , Dose-Response Relationship, Drug , Eukaryota/growth & development , Indoles/toxicity , Isoindoles , Structure-Activity Relationship , Synechococcus/drug effects , Synechococcus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...