Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Leuk Res ; 60: 53-57, 2017 09.
Article in English | MEDLINE | ID: mdl-28651105

ABSTRACT

We examined the consequences of 3-deazaneplanocin A (DZNep) on HACE1 expression in human Burkitt- Lymphoma-derived cells to investigate fundamental molecular mechanisms that control its expression. We treated the human Burkitt- Lymphoma-derived cells lines Ramos and Raji with DZNep and examined HACE1 mRNA expression by RT-PCR. We also studied the effect of DZNep on the methylation of lysine 9 and 27 of histone 3 (H3K27me3 and H3K9me2) associated with the CpG88 and CpG177 islands of the HACE1 promoters by chromatin immunoprecipitation and quantitative PCR. CpG88 (hypomethylated) of the HACE1 promoter was enriched for histone marks H3K27me3 and H3K9me2 whereas CpG177 (hypermethylated) was only enriched for H3K9me2. DZNep treatment increased HACE1 gene expression which was further increased by the addition of trichostatine A (TSA), a promising therapeutic compound for the treatment of human B-Lymphoma. Histone methylation (both H3K9me2 and H3K27me3) of the HACE1 promoter concomitantly decreased. Our experiments suggest that HACE1 can be downregulated by methylation of its promoter region chromatin (H3K27me3 and H3K9me2), making HACE1 a potential target for DZNep combined with TSA. These results highlight the heterogeneity of HACE1 regulation in B-lymphoma and suggest that successful drug-induced restoration of epigenetically silenced tumor suppressor genes will require accurate characterization of cell type- and locus-specific gene silencing mechanisms.


Subject(s)
Burkitt Lymphoma/pathology , Epigenesis, Genetic , Ubiquitin-Protein Ligases/genetics , Adenosine/analogs & derivatives , Adenosine/pharmacology , Burkitt Lymphoma/drug therapy , Cell Line, Tumor , CpG Islands , DNA Methylation/drug effects , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic , RNA, Messenger/analysis , Ubiquitin-Protein Ligases/drug effects
2.
Leuk Res ; 45: 90-100, 2016 06.
Article in English | MEDLINE | ID: mdl-27107267

ABSTRACT

HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1, HACE1, located on chromosome 6q, encodes an E3 ubiquitin ligase and is downregulated in many human tumors. Here, we report HACE1 as a candidate tumor suppressor gene down-regulated by a combination of deletion and epigenetic mechanisms. HACE1 deletions were observed in 40% of B-cell lymphoma tumors. Hypermethylation of the HACE1 promoter CpG177 island was found in 60% (68/111) of cases and in all tested B-cell lymphoma lines. Using HDAC inhibitors, we observed predominantly inactive chromatin conformation (methylated H3 histones H3K9me2) in HACE1 gene promoter region. We demonstrated in Ramos and Raji cells that down-regulation of HACE1 expression was associated with a significant decrease in apoptosis and an accumulation of cells in the S and G2/M phases. Our experiments indicate that HACE1 can act as a haploinsufficient tumor suppressor gene in most B-cell lymphomas and can be downregulated by deacetylation of its promoter region chromatin, which makes HACE1 a potential target for HDAC inhibitors.


Subject(s)
Down-Regulation/genetics , Epigenesis, Genetic , Gene Deletion , Lymphoma, B-Cell/genetics , Ubiquitin-Protein Ligases/physiology , Acetylation , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , DNA Methylation , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Histone Deacetylase Inhibitors/pharmacology , Humans , Promoter Regions, Genetic , Ubiquitin-Protein Ligases/genetics
3.
Cancer Res ; 75(17): 3446-55, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26060019

ABSTRACT

Colorectal cancers with microsatellite instability (MSI) represent 15% of all colorectal cancers, including Lynch syndrome as the most frequent hereditary form of this disease. Notably, MSI colorectal cancers have a higher density of tumor-infiltrating lymphocytes (TIL) than other colorectal cancers. This feature is thought to reflect the accumulation of frameshift mutations in sequences that are repeated within gene coding regions, thereby leading to the synthesis of neoantigens recognized by CD8(+) T cells. However, there has yet to be a clear link established between CD8(+) TIL density and frameshift mutations in colorectal cancer. In this study, we examined this link in 103 MSI colorectal cancers from two independent cohorts where frameshift mutations in 19 genes were analyzed and CD3(+), CD8(+), and FOXP3(+) TIL densities were quantitated. We found that CD8(+) TIL density correlated positively with the total number of frameshift mutations. TIL densities increased when frameshift mutations were present within the ASTE1, HNF1A, or TCF7L2 genes, increasing even further when at least one of these frameshift mutations was present in all tumor cells. Through in vitro assays using engineered antigen-presenting cells, we were able to stimulate peripheral cytotoxic T cells obtained from colorectal cancer patients with peptides derived from frameshift mutations found in their tumors. Taken together, our results highlight the importance of a CD8(+) T cell immune response against MSI colorectal cancer-specific neoantigens, establishing a preclinical rationale to target them as a personalized cellular immunotherapy strategy, an especially appealing goal for patients with Lynch syndrome.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Microsatellite Instability , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Female , Forkhead Transcription Factors/genetics , Frameshift Mutation/genetics , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/pathology , Male , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...