Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31195657

ABSTRACT

Reuse of waste is one of the main principles of sustainable development and circular economy. Secondary alkaline lead slag is a hazardous waste generated in the recycling process of lead-acid batteries that may be suitable in construction materials. The environmental impact of the use of lead slag as a partial replacement of fine aggregates in the cement-based stabilization/solidification (S/S) process for the preparation of concrete was studied in this paper. Solidified products containing 10%, 15%, 20%, and 25% slag were laboratory tested by unconfined compressive strength (UCS) analyses and the Toxicity Characteristic Leaching Procedure (TCLP). At the same time, the leachability of toxic elements from solidified products with a high percent of slag was evaluated under environmental conditions for during one year. The results of the UCS and TCLP indicated that utilization of this type of slag in cement-based applications may be justified with its controlled addition. However, the described application of the slag was disputed due to the high release of As under high alkaline environmental conditions. Eh-pH analyses and the geochemical modeling using the software PHREEQC were evaluated, as well as the mechanism of pollutant (Pb, As) immobilization (precipitation, adsorption) as a function of pH conditions.


Subject(s)
Construction Materials/analysis , Environmental Pollutants/analysis , Hazardous Waste/analysis , Lead/analysis , Recycling , Adsorption
2.
Article in English | MEDLINE | ID: mdl-26457922

ABSTRACT

The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.


Subject(s)
Metals, Heavy/analysis , Metals, Heavy/chemistry , Sewage/analysis , Sewage/chemistry , Wastewater/analysis , Wastewater/chemistry , Environmental Monitoring , Mining , Serbia , Water Purification , X-Ray Diffraction
3.
ScientificWorldJournal ; 2015: 601970, 2015.
Article in English | MEDLINE | ID: mdl-25789335

ABSTRACT

The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623-923 K) and time intervals (1-5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K.

SELECTION OF CITATIONS
SEARCH DETAIL