Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(16): 9290-9298, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-35497248

ABSTRACT

The digester performance was enhanced by ultrasonic application during pretreatment and the anaerobic digestion (AD) process. Two setups (with and without ultrasonic application) were applied during pretreatment and AD, to untreated and potassium hydroxide (KOH) pretreated wheat straw. The results confirmed that the ultrasonic application enhanced the hydrolysis process during pretreatment. The highest total volatile fatty acid (TVFA) (3012 ± 18 mg L-1) production and overall lignin, hemicellulose, and cellulose (LHC) reductions (22.4 ± 0.5%) were obtained from ultrasonic assisted KOH pretreated (KOHU) samples, after 36 hours of pretreatment. Similarly, the SEM analysis showed obvious disruption in the outer structure of KOHU samples. However, the ultrasonic application during AD showed significant improvement in biodegradation rate, biogas and biomethane production. Obvious reduction in sonication time (76%) along with enhanced biogas (570 ± 9 mL gm-1 VS) and biomethane (306 ± 12 mL gm-1 VS) production were observed from KOH pretreated digesters, when ultrasonication was applied during AD. Moreover, the biodegradation rate reached up to 76% along with highest total solid (TS) and volatile solid (VS) reductions from digesters with single KOH pretreatment and ultrasonic influence during AD. Finally, the digester effluent ranged in between the stable values, confirming the completion of the AD process. These results suggested that ultrasonic application was more effective when applied during AD due to the higher liquid to solid ratio. The reduction in energy input can be beneficial for commercial applications and to recognize the better stage for ultrasonic application for enhanced biomethane yield.

2.
Sci Total Environ ; 687: 1274-1284, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412461

ABSTRACT

Anaerobic digestion (AD) technology is one of the best eco-friendly waste-to-energy processes. Hence the trend of biogas production shows considerable ranges of fluctuations in entire digestion period. This study analyzes the daily substance conversion dynamics, biomethane production and changes in microbial community structure. The results show that in the first peak of biogas production during 1st up to 4th days of the digestion period, CO2 was the dominant component. However, the daily methane production (DMP) reveal accelerated increment starting from day 8 up to the peak point on day 13 (462.11 mL/d). The concentration of acetic acid covered 21.80% up to 62.00% of the total VFAs in the first 10 days of digestion period. On the other hand, the accumulation of propionic acid is in the range of 1735.70 mg/L- 2893.12 mg/L in between day 5-15, which is beyond the inhibition level (1000 mg/L) but the system didn't stop biogas production. The distribution of bacterial family such as Clostridiaceae_1, Prevotellaceae, Enterobacteriaceae and Peptostreptococcaceae are the dominant group at early stage as compared to composition in remaining stages except Enterobacteriaceae which have marginally high abundance in lowest biogas production point. The archaeal genus Methanosaeta is dominant among the samples collected at early stages (65.66%-77.22%). However, the Methanobacterium is predominant (34.88%-59.40%) in samples obtained at late stages of AD period. On the other hand, the distribution of Methanosarcina is comparable in the first three samples (S1(16.60%), S2(22.21%) and S3(20.38%)) than the stable stage (S4 (6.7%)). This study demonstrates the detailed conditions at fluctuating and constant biogas production periods, which would benefit future researchers working in similar area.


Subject(s)
Bioreactors/microbiology , Microbiota , Waste Disposal, Fluid , Oryza
3.
Appl Biochem Biotechnol ; 187(4): 1356-1370, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30229435

ABSTRACT

The unbalanced nutrients of municipal solid waste (MSW), particularly high carbon contents, were regarded as a major limiting factor to anaerobic digestion process. In this study, the addition of MSW in food waste (FW) feedstock to have a balanced C/N ratio was studied. Different co-substrate mixtures with C/N ratio of 20 to 40 were subjected to anaerobic batch experiment at lab scale, under mesophilic conditions. The biogas production decreased with the increase in C/N ratio due to insufficient availability of organic nitrogen for anaerobic microbial growth. Specific biogas and methane yields were observed to be 827 and 474.44 mL g-1VS, respectively, with volatile solids (VS) reduction rate of 88%, at C/N ratio of 20. Furthermore, the effect of the substrate to inoculum (S/I) ratio on digester performance was also studied. The biogas production decreased with the increase in S/I ratio due to the formation of more volatile fatty acids (VFAs) which led to decrease in pH and accumulated unionized ammonia-N. Specific biogas and methane yields were recorded to be 655 and 410.20 mL g-1VS, with 64% rate of biodegradability at S/I ratio of 0.5. Kinetics and statistics study showed that the higher S/I ratio could lead to VFA accumulation and result in low methane yield.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Food , Solid Waste , Ammonia/metabolism , Anaerobiosis , Biodegradation, Environmental , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...