Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 2(1): e00201, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24744880

ABSTRACT

Proper apical airway surface hydration is essential to maintain lung function. This hydration depends on well-balanced water resorption and secretion. The mechanisms involved in resorption are still a matter of debate, especially as the measurement of transepithelial water transport remains challenging. In this study, we combined classical short circuit current (I SC) measurements with a novel D2O dilution method to correlate ion and water transport in order to reveal basic transport mechanisms in lung epithelia. D2O dilution method enabled precise analysis of water resorption with an unprecedented resolution. NCI-H441 cells cultured at an air-liquid interface resorbed water at a rate of 1.5 ± 0.4 µL/(h cm(2)). Water resorption and I SC were reduced by almost 80% in the presence of the bulk Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) or amiloride, a specific inhibitor of epithelial sodium channel (ENaC). However, water resorption and I SC were only moderately affected by forskolin or cystic fibrosis transmembrane regulator (CFTR) channel inhibitors (CFTRinh-172 and glybenclamide). In line with previous studies, we demonstrate that water resorption depends on ENaC, and CFTR channels have only a minor but probably modulating effect on water resorption. However, the major ENaC-mediated water resorption depends on an apical non-CFTR Cl(-) conductance.

2.
FASEB J ; 27(4): 1772-83, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23307836

ABSTRACT

Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X4 receptors on LBs. We propose that FACE, in addition to facilitating surfactant secretion, modulates alveolar fluid transport. Correlative fluorescence and atomic force microscopy revealed that FACE-dependent water influx correlated with individual fusion events in rat primary ATII cells. Moreover, ATII cell monolayers grown at air-liquid interface exhibited increases in short-circuit current (Isc) on stimulation with ATP or UTP. Both are potent agonists for LB exocytosis, but only ATP activates FACE. ATP, not UTP, elicited additional fusion-dependent increases in Isc. Overexpressing dominant-negative P2X4 abrogated this effect by ∼50%, whereas potentiating P2X4 lead to ∼80% increase in Isc. Finally, we monitored changes in alveolar surface liquid (ASL) on ATII monolayers by confocal microscopy. Only stimulation with ATP, not UTP, led to a significant, fusion-dependent, 20% decrease in ASL, indicating apical-to-basolateral fluid transport across ATII monolayers. Our data support the first direct link between LB exocytosis, regulation of surfactant secretion, and transalveolar fluid resorption via FACE.


Subject(s)
Adenosine Triphosphate/pharmacology , Membrane Fusion/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Surfactants/metabolism , Receptors, Purinergic P2X4/metabolism , Animals , Biological Transport/drug effects , Cations/metabolism , Exocytosis/physiology , Lung/drug effects , Lung/metabolism , Microscopy, Atomic Force/methods , Pulmonary Alveoli/cytology , Rats , Rats, Sprague-Dawley , Uridine Triphosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...