Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biosaf ; 27(2): 79-83, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36776747

ABSTRACT

Introduction: The National Biodefense Analysis and Countermeasures Center (NBACC) is a national resource established to understand the scientific basis of the risk posed by biological threats, and to analyze evidentiary material from bioterror or biocrime events. Like many other U.S. research institutions, the emergence of the SARS-CoV-2 virus, and rapid development of the COVID-19 pandemic allowed only a few short weeks of preparations before infectious disease controls could be implemented. Due to the nature of its mission, the NBACC must be available on a 24/7 readiness posture to support bioforensic casework from the Federal Bureau of Investigation (FBI). It also serves to provide the Department of Homeland Security (DHS) with key scientific data to assess the hazard from biological agents, especially in this instance to inform the national response to COVID-19. These factors caused the operational tempo to significantly increase. Methods: To accomplish our mission during a national emergency, laboratory staffing levels needed to be maintained at prepandemic levels. As a result, the Battelle National Biodefense Institute (BNBI) leadership took significant actions to prevent COVID-19 exposure and transmission within the workforce. These multiple actions included engineering changes to the facility, stockpiling of personal protective equipment and consumable products, educating the staff on the signs and symptoms of COVID-19, reducing the population of the nonlaboratory staff, and the completion of a comprehensive risk assessment to quantify the risk of COVID-19 infection for all NBACC staff. Conclusion: These early actions, used in tandem, were successful in maintaining a healthy and stable workforce so that BNBI's research objectives could be met.

2.
Pathogens ; 10(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832652

ABSTRACT

As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.

3.
Disaster Med Public Health Prep ; 13(5-6): 995-1010, 2019 12.
Article in English | MEDLINE | ID: mdl-31203830

ABSTRACT

A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.


Subject(s)
Biohazard Release/prevention & control , Chemical Hazard Release/prevention & control , Emergency Medical Services/methods , Explosive Agents/adverse effects , Radioactive Hazard Release/prevention & control , Disaster Planning/organization & administration , Disaster Planning/trends , Emergency Medical Services/trends , Humans
4.
Emerg Infect Dis ; 22(7)2016 07.
Article in English | MEDLINE | ID: mdl-27191188

ABSTRACT

Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures.


Subject(s)
Coronavirus Infections/veterinary , Disease Models, Animal , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines/immunology , Animals , Camelus , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Humans
6.
Vaccine ; 28(31): 4875-9, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20483192

ABSTRACT

In the fall 2009, the University of Pittsburgh Models of Infectious Disease Agent Study (MIDAS) team employed an agent-based computer simulation model (ABM) of the greater Washington, DC, metropolitan region to assist the Office of the Assistant Secretary of Public Preparedness and Response, Department of Health and Human Services, to address several key questions regarding vaccine allocation during the 2009 H1N1 influenza pandemic, including comparing a vaccinating children (i.e., highest transmitters)-first policy versus the Advisory Committee on Immunization Practices (ACIP)-recommended vaccinating at-risk individuals-first policy. Our study supported adherence to the ACIP (instead of a children-first policy) prioritization recommendations for the H1N1 influenza vaccine when vaccine is in limited supply and that within the ACIP groups, children should receive highest priority.


Subject(s)
Computer Simulation , Disease Outbreaks/prevention & control , Health Care Rationing , Influenza Vaccines/supply & distribution , Influenza, Human/prevention & control , Child , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology
7.
Emerg Infect Dis ; 14(11): 1685-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18976549

ABSTRACT

Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person's independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed.


Subject(s)
Containment of Biohazards , Laboratories , Leadership , Medical Laboratory Personnel/education , Animals , Bioterrorism/prevention & control , Certification/standards , Disease Outbreaks/prevention & control , Humans , United States , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL
...