Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Langmuir ; 38(17): 5033-5039, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35502540

ABSTRACT

The enthalpy and entropy of micellization in water, ΔHmic and ΔSmic, respectively, of three linear amphiphilic BAB block copolymers consisting of either poly(methyl acrylate) (Mn ∼ 1200 and 700 Da) or poly(ethyl acrylate) (Mn ∼ 800 Da) as hydrophobic (B) segments and poly(ethylene oxide) (PEO) as the hydrophilic (A, Mn ∼ 3000 Da) segment were determined by isothermal titration calorimetry (ITC). The ΔHmic and ΔSmic of the cyclic AB block copolymers obtained by cyclization of the linear triblock copolymers were determined under the same conditions. The ΔHmic value of the cyclic copolymers was smaller than that of their linear precursors. The ΔSmic value showed the same trend, but the relative difference between the cyclized and linear copolymers was less pronounced. The hydrodynamic diameter (Dh), critical micelle concentration (CMC), molecular weight (Mw-mic), and second virial coefficient (A2) of the micelles were determined. The Dh value of the cyclic copolymer micelles was smaller than the linear counterpart. On the other hand, the CMC value became larger, whereas the A2 value was comparable or increased by cyclization. Overall, the results suggest that, in the unimer state, the hydrophobic segments of the cyclized copolymers form a tightly coiled structure to minimize contact with water, resulting in the smaller ΔHmic value. Contrary to the linear copolymer micelles, the cyclic copolymer micelles have no "dangling chains", which may explain the topology-driven slight difference in the ΔSmic value.

2.
J Colloid Interface Sci ; 487: 88-96, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27756003

ABSTRACT

Equilibration in adsorbing polymer systems can be very slow, leading to different physical properties at a given condition depending on the pathway that was used to reach this state. Here we explore this phenomenon using a diblock copolymer consisting of a cationic anchor block and a thermoresponsive block of poly(2-isopropyl-2-oxazoline), PIPOZ. We find that at a given temperature different polymer chain densities at the silica surface are achieved depending on the previous temperature history. We explore how this affects surface and friction forces between such layers using the atomic force microscope colloidal probe technique. The surface forces are purely repulsive at temperatures <40°C. A local force minimum at short separation develops at 40°C and a strong attraction due to capillary condensation of a polymer-rich phase is observed close to the bulk phase separation temperature. The friction forces decrease in the cooling stage due to rehydration of the PIPOZ chain. A consequence of the adsorption hysteresis is that the friction forces measured at 25°C are significantly lower after exposure to a temperature of 40°C than prior to heating, which is due to higher polymer chain density on the surface after heating.

3.
Chem Commun (Camb) ; 50(61): 8350-2, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24942471

ABSTRACT

Telechelic α,ω-di(twin-tailed poly(N-isopropylacrylamides)) form polymersomes in water that increase in size by fusion when the water temperature exceeds the polymers cloud point temperature. Hybrid vesicles form in mixed suspensions of giant phospholipid liposomes and polymersomes by adsorption/fusion, and undergo further transformations, such as fission.


Subject(s)
Acrylic Resins/chemistry , Liposomes/chemistry , Lipid Bilayers/chemistry , Particle Size , Temperature , Water/chemistry
4.
Langmuir ; 28(20): 7880-8, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22548489

ABSTRACT

In this study we examine two methods of enhancement of aggregation of hydrophobically modified chitosan in dilute aqueous solutions: by increasing the content of n-dodecyl substituents, favoring hydrophobic association, and by increasing the amount of added low molecular weight salt, screening the electrostatic repulsion between similarly charged aggregating chains. By static and dynamic light scattering it was demonstrated that at the growth of the content of hydrophobic groups in the polymer (2-4 mol %) and of the amount of salt in solution (0.025-0.1 M) the weight fraction of aggregates increases, but the aggregation number remains unchanged. This behavior was attributed to the core-shell structure of the aggregates, which provides a low surface energy and strong attraction of associating groups inside the core. At the same time, the effects of the content of hydrophobic groups in the polymer and the ionic strength of the solution on the radii of the aggregates are quite different. Increasing the content of hydrophobic groups induces growth of the gyration radii of the aggregates, but does not affect their hydrodynamic radii. These data suggest the expansion of the hydrophobic core of the aggregates and the contraction of their highly swollen shell. On the other hand, increasing the salt concentration leads to a decrease of both the gyration and hydrodynamic radii of the aggregates, which is due to partial screening of electrostatic repulsion between similarly charged units and lowering of the osmotic pressure of counterions confined inside the aggregates.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Light , Salts/chemistry , Scattering, Radiation , Water/chemistry
5.
Carbohydr Polym ; 87(1): 687-694, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-34663021

ABSTRACT

By dynamic light scattering in combination with fluorescence spectroscopy and TEM it was shown that aggregation in aqueous solutions is inherent not only to chitosan, but also to two other water-soluble derivatives of chitin: O-carboxymethylchitin and di-N,N-carboxymethylchitosan. Aggregation is observed even for the samples without N-acetyl-d-glucosamine units, which remain upon incomplete chemical modification of chitin, indicating that specific interactions between residual chitin repeat units cannot be the main reason for the aggregation. At the same time, 7M urea weakens the aggregation, thus testifying that hydrogen bonding and/or hydrophobic interactions are partially responsible for this phenomenon. The incomplete disruption of aggregates in 7M urea may arise from crystallization of junction zones between different macromolecules, which makes some hydrogen bonds inaccessible for urea or too stable for breaking by this agent.

6.
Biomacromolecules ; 11(12): 3457-66, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21105706

ABSTRACT

Multichain aggregates together with individual macromolecules were detected by light scattering in dilute aqueous solutions of chitosan and of its hydrophobic derivatives bearing 4 mol % of n-dodecyl side groups. It was demonstrated that the size of aggregates and their aggregation numbers increase at the introduction of hydrophobic side groups into polymer chains. The key result concerns the effect of the chain length of individual macromolecules on the aggregation behavior. It was shown that for both unmodified and hydrophobically modified (HM) chitosan, the size of aggregates is independent of the length of single chains, which may result from the electrostatic nature of the stabilization of aggregates. At the same time, the number of macromolecules in one aggregate increases significantly with decreasing length of single chains to provide a sufficient number of associating groups to stabilize the aggregate. The analysis of the light scattering data together with TEM results suggests that the aggregates of chitosan and HM chitosan represent spherical hydrogel particles with denser core and looser shell covered with dangling chains.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Light , Microscopy, Electron, Transmission , Scattering, Radiation , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...