Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(8): 2317-2326, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38545688

ABSTRACT

The blood flow through our microvascular system is a renowned difficult process to understand because the complex flow behavior of blood is intertwined with the complex geometry it has to flow through. Conventional 2D microfluidics has provided important insights, but progress is hampered by the limitation of 2-D confinement. Here we use selective laser-induced etching to excavate non-planar 3-D microfluidic channels in glass that consist of two generations of bifurcations, heading towards more physiological geometries. We identify a cross-talk between the first and second bifurcation only when both bifurcations are in the same plane, as observed in 2D microfluidics. Contrarily, the flow in the branch where the second bifurcation is perpendicular to the first is hardly affected by the initial distortion. This difference in flow behavior is only observed when red blood cells are aggregated, due to the presence of dextran, and disappears by increasing the distance between both generations of bifurcations. Thus, 3-D structures scramble in-plane flow distortions, exemplifying the importance of experimenting with truly 3D microfluidic designs in order to understand complex physiological flow behavior.


Subject(s)
Erythrocytes , Microfluidics
2.
J Chem Phys ; 154(20): 204901, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34241175

ABSTRACT

We investigate the anomalous dynamics in smectic phases of short host rods where, counter-intuitively, long guest rod-shaped particles diffuse faster than the short host ones due to their precise size mismatch. In addition to the previously reported mean-square displacement, we analyze the time evolution of the self-Van Hove functions G(r, t), as this probability density function uncovers intrinsic heterogeneous dynamics. Through this analysis, we show that the dynamics of the host particles parallel to the director becomes non-Gaussian and therefore heterogeneous after the nematic-to-smectic-A phase transition, even though it exhibits a nearly diffusive behavior according to its mean-squared displacement. In contrast, the non-commensurate guest particles display Gaussian dynamics of the parallel motion, up to the transition to the smectic-B phase. Thus, we show that the self-Van Hove function is a very sensitive probe to account for the instantaneous and heterogeneous dynamics of our system and should be more widely considered as a quantitative and complementary approach of the classical mean-squared displacement characterization in diffusion processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...