Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 15(11): e17683, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37724723

ABSTRACT

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.


Subject(s)
Muscular Atrophy, Spinal , Quality of Life , Animals , Humans , Infant , Mice , Exons , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/therapeutic use
2.
RNA ; 22(3): 467-76, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26729921

ABSTRACT

In mammalian cells under oxidative stress, the methionyl-tRNA synthetase (MetRS) misacylates noncognate tRNAs at frequencies as high as 10% distributed among up to 28 tRNA species. Instead of being detrimental for the cell, misincorporation of methionine residues in the proteome reduces the risk of oxidative damage to proteins, which aids the oxidative stress response. tRNA microarrays have been essential for the detection of the full pattern of misacylated tRNAs, but have limited capacity to investigate the misacylation and mistranslation mechanisms in live cells. Here we develop a dual-fluorescence reporter to specifically measure methionine misincorporation at glutamic acid codons GAA and GAG via tRNA(Glu) mismethionylation in human cells. Our method relies on mutating a specific Met codon in the active site of the fluorescent protein mCherry to a Glu codon that renders mCherry nonfluorescent when translation follows the genetic code. Mistranslation utilizing mismethionylated tRNA(Glu) restores fluorescence in proportion to the amount of misacylated tRNA(Glu). This cellular approach works well for both transient transfection and established stable HEK293 lines. It is rapid, straightforward, and well suited for high-throughput activity analysis under a wide range of physiological conditions. As a proof of concept, we apply this method to characterize the effect of human tRNA(Glu) isodecoders on mistranslation and discuss the implications of our findings.


Subject(s)
Fluorescent Dyes , Methionine/genetics , Protein Biosynthesis , Base Sequence , Humans , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Transfer, Glu/chemistry , RNA, Transfer, Glu/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...