Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 188: 15-25, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37164233

ABSTRACT

A method of increasing the permeability of ibuprofen through the skin using a rotating magnetic field (RMF) is presented. This study evaluated whether 50 Hz RMF modifies ibuprofen's permeability through the skin. Ibuprofen and its structural modifications in the form of ibuprofenates of isopropyl esters of L-amino acids such as L-valine, L-phenylalanine, L-proline, and L-aspartic acid were used in the research. To this end, Franz cells with skin as membrane were exposed to 50 Hz RMF with 5% ibuprofen and its derivatives in an ethanol solution for 48 h. Following the exposures, the amount of penetrated compound was analysed. Regardless of the compound tested, a significant increase in drug transport through the skin was observed. The differences in the first 30 min of permeation are particularly noticeable. Furthermore, it was shown that using RMF increases the permeability of ibuprofen from 4 to 244 times compared to the test without the RMF. The greatest differences were observed for unmodified ibuprofen. However, it is noteworthy that the largest amounts of the active substance were obtained with selected modifications and exposure to RMF. The RMF may be an innovative and interesting technology that increases the penetration of anti-inflammatory and anti-ache drugs through the skin.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ibuprofen , Ibuprofen/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Amino Acids , Electromagnetic Fields , Skin Absorption , Administration, Cutaneous
2.
Eur J Pharm Biopharm ; 185: 183-189, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905969

ABSTRACT

The paper presents a method of increasing the permeability of various active substances through the skin by means of a rotating magnetic field. The study used 50 Hz RMF and various active pharmaceutical ingredients (APIs) such as caffeine, ibuprofen, naproxen, ketoprofen, and paracetamol. Various concentrations of active substance solutions in ethanol were used in the research, corresponding to those in commercial preparations. Each experiment was conducted for 24 h. It was shown that, regardless of the active compound used, an increase in drug transport through the skin was observed with RMF exposure. Furthermore, the release profiles depended on the active substance used. Exposure to a rotating magnetic field has been shown to effectively increase the permeability of an active substance through the skin.


Subject(s)
Ketoprofen , Skin , Permeability , Magnetic Fields , Pharmaceutical Preparations , Administration, Cutaneous
3.
Adv Appl Microbiol ; 121: 27-72, 2022.
Article in English | MEDLINE | ID: mdl-36328731

ABSTRACT

An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.


Subject(s)
Electromagnetic Fields , Microalgae , Microalgae/metabolism , Biotechnology , Bioengineering , Biomass
4.
Sci Rep ; 12(1): 9712, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690675

ABSTRACT

This work presents the results ofa study which concerns the influence of rotating magnetic field (RMF) on the antibacterial performance of commercial pine essential oil. A suspension of essential oil in saline solution and Escherichia coli were exposed to the rotating magnetic Afield (the frequency of electrical current supplied by a RMF generator f = 1-50 Hz; the averaged values of magnetic induction in the cross-section of the RMF generator B = 13.13 to - 19.92 mT, time of exposure t = 160 min, temperature of incubation 37 °C). The chemical composition of pine (Pinus sylvestris L.) essential oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). The main constituents were α-pinene (28.58%), ß-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to and 50 Hz increased the antimicrobial efficiency of oil a concentration lower than 50%.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Pinus , Anti-Bacterial Agents , Magnetic Fields , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pinus/chemistry
5.
Arch Microbiol ; 204(7): 421, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35748948

ABSTRACT

The growing interest in bacteriophages and antibiotics' combined use poses new challenges regarding this phenomenon's accurate description. This study aimed to apply the PhageScore methodology to assess the phage-antibiotic combination activity in liquid bacterial culture. For this purpose, previously described Acinetobacter infecting phages vB_AbaP_AGC01, Aba-1, and Aba-4 and antibiotics (gentamicin, ciprofloxacin, meropenem, norfloxacin, and fosfomycin) were used to obtain a lysis curve of bacteriophages under antibiotic pressure. The experimental data were analyzed using the Fractional Inhibitory Concentration Index (FICI) and PhageScore methodology. The results obtained by this method clearly show differences between phage lytic activity after antibiotic addition. Thus, we present the potential use of the PhageScore method as a tool for characterizing the phage antibiotic synergy in liquid culture. Further, the optimization of the PhageScore for this purpose can help compare antibiotics and their outcome on bacteriophage lytic activity.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Anti-Bacterial Agents/pharmacology , Ciprofloxacin
6.
Curr Issues Mol Biol ; 44(3): 1316-1325, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35723311

ABSTRACT

Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t50 and t75 of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10-9 mL × min-1 to 1.64 × 10-8 mL × min-1. The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10-9 mL × min-1 to 7.34 × 10-9 mL × min-1. Additionally, the phage T4 zeta potential changed under RMF from -11.1 ± 0.49 mV to -7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.

7.
Front Bioeng Biotechnol ; 10: 795871, 2022.
Article in English | MEDLINE | ID: mdl-35356781

ABSTRACT

Pseudomonas aeruginosa is a producer of desired secondary metabolites, including pyocyanin. Potential uses of this pigment urge a search for improved production methods. Recent trends in bioprocessing show the potential of the use of electromagnetic fields (EMFs) to influence the growth of microorganisms and even modulate the concentration of bioproducts. Here, we aimed at assessing the influence of rotating magnetic field (RMF) and static magnetic field (SMF) on pyocyanin production, growth rate, and respiration of P. aeruginosa. Moreover, exposure time to EMFs (2, 6, and 12 h) and culture volume (10 and 50 ml) were initially assessed. P. aeruginosa was cultivated in magnetically assisted reactors with 5 and 50 Hz RMF (magnetic induction of 24.32 and 42.64 mT, respectively) and SMF (-17.37 mT). Growth kinetics was assessed with Gompertz equation. The viability was tested using resazurin assay, whereas pyocyanin production by chloroform-HCl methodology. The growth of P. aeruginosa was slightly stimulated by exposure to a RMF with 50 Hz (108% related to the control) and significantly by SMF (132% related to the control), while RMF 5 Hz exposure prolonged the time of inflection (in comparison to RMF 50 Hz and SMF). The 6-h exposure to EMFs resulted in the highest pyocyanin production in comparison to the control, indicating a relationship between exposure time and product concentration. Moreover, cultures led in smaller volumes produced more pyocyanin. Our findings show that the use of different EMF types, frequency, and exposition time and volume could be used interchangeably to obtain different bioprocess aims.

8.
Microorganisms ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36677380

ABSTRACT

Hydrodynamic conditions are critical in bioprocessing because they influence oxygen availability for cultured cells. Processes in typical laboratory bioreactors need optimization of these conditions using mixing and aeration control to obtain high production of the desired bioproduct. It could be done by experiments supported by computational fluid dynamics (CFD) modeling. In this work, we characterized parameters such as mixing time, power consumption and mass transfer in a 2 L bioreactor. Based on the obtained results, we chose a set of nine process parameters to test the hydrodynamic impact on a selected bioprocess (mixing in the range of 0-160 rpm and aeration in the range of 0-250 ccm). Therefore, we conducted experiments with P. aeruginosa culture and assessed how various hydrodynamic conditions influenced biomass, pyocyanin and rhamnolipid production. We found that a relatively high mass transfer of oxygen (kLa = 0.0013 s-1) connected with intensive mixing (160 rpm) leads to the highest output of pyocyanin production. In contrast, rhamnolipid production reached maximal efficiency under moderate oxygen mass transfer (kLa = 0.0005 s-1) and less intense mixing (in the range of 0-60 rpm). The results indicate that manipulating hydrodynamics inside the bioreactor allows control of the process and may lead to a change in the metabolites produced by bacterial cells.

9.
Polymers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833249

ABSTRACT

The aim of this study was to demonstrate the applicability of a novel magnetically assisted external-loop airlift bioreactor (EL-ALB), equipped with rotating magnetic field (RMF) generators for the preparation of Komagataeibacterxylinus inoculum during three-cycle repeated fed-batch cultures, further used for bacterial cellulose (BC) production. The fermentation carried out in the RMF-assisted EL-ALB allowed to obtain an inoculum of more than 200× higher cellular density compared to classical methods of inoculum preparation. The inoculum obtained in the RMF-assisted EL-ALB was characterized by a high and stable metabolic activity during repeated batch fermentation process. The application of the RMF-assisted EL-ALB for K. xylinus inoculum production did not induce the formation of cellulose-deficient mutants. It was also confirmed that the ability of K. xylinus to produce BC was at the same level (7.26 g/L of dry mass), regardless of inoculum age. Additionally, the BC obtained from the inoculum produced in the RMF-assisted EL-ALB was characterized by reproducible water-related properties, mechanical strength, nano-fibrillar structure and total crystallinity index. The lack of any negative impact of inoculum preparation method using RMF-assisted EL-ALB on BC properties is of paramount value for its future applications, including use as a biomaterial in tissue engineering, wound healing, and drug delivery, where especially BC liquid capacity, nanostructure, crystallinity, and mechanical properties play essential roles.

10.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071384

ABSTRACT

Since the effect of MFs (magnetic fields) on various biological systems has been studied, different results have been obtained from an insignificant effect of weak MFs on the disruption of the circadian clock system. On the other hand, magnetic fields, electromagnetic fields, or electric fields are used in medicine. The presented study was conducted to determine whether a low-frequency RMF (rotating magnetic field) with different field parameters could evoke the cellular response in vitro and is possible to modulate the cellular response. The cellular metabolic activity, ROS and Ca2+ concentration levels, wound healing assay, and gene expression analyses were conducted to evaluate the effect of RMF. It was shown that different values of magnetic induction (B) and frequency (f) of RMF evoke a different response of cells, e.g., increase in the general metabolic activity may be associated with the increasing of ROS levels. The lower intracellular Ca2+ concentration (for 50 Hz) evoked the inability of cells to wound closure. It can be stated that the subtle balance in the ROS level is crucial in the wound for the effective healing process, and it is possible to modulate the cellular response to the RMF in the context of an in vitro wound healing.


Subject(s)
Calcium/metabolism , Electromagnetic Fields , Fibroblasts/metabolism , Keratinocytes/metabolism , Reactive Oxygen Species/metabolism , Wound Healing/physiology , Animals , Cell Line , Cell Survival/genetics , Fibroblasts/cytology , Gene Expression , Humans , Keratinocytes/cytology , Mice , Rotation , Wound Healing/genetics , cdc42 GTP-Binding Protein/genetics
11.
Microorganisms ; 8(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142809

ABSTRACT

The cultivation of bacteria sets a ground for studying biological processes in many scientific disciplines. The development of the bacterial population is commonly described with three factors that can be used to evaluate culture conditions. However, selecting only one of them for the optimization protocol is rather problematic and may lead to unintended errors. Therefore, we proposed a novel mathematical approach to obtain a single factor that could be used as the objective function to evaluate the whole growth dynamic and support the optimization of the biomass production process. The sigmoidal-shape curve, which is the commonly used function to plot the amount of biomass versus time, was the base for the mathematical analysis. The key process parameters, such as maximal specific growth rate and lag-phase duration were established with the use of mathematical coefficients of the model curve and combined to create the single growth parameter. Moreover, this parameter was used for the exemplary optimization of the cultivation conditions of Klebsiella pneumoniae that was cultured to be further used in the production of lytic bacteriophages. The proposed growth parameter was successfully validated and used to calculate the optimal process temperature of the selected bacterial strain. The obtained results indicated that the proposed mathematical approach could be effortlessly adapted for a precise evaluation of growth curves.

12.
Electromagn Biol Med ; 36(2): 192-201, 2017.
Article in English | MEDLINE | ID: mdl-27786558

ABSTRACT

The current study describes properties of bacterial cellulose (BC) obtained from Komagataeibacter xylinus cultures exposed to the rotating magnetic field (RMF) of 50 Hz frequency and magnetic induction of 34 mT for controlled time during 6 days of cultivation. The experiments were carried out in the customized RMF exposure system adapted for biological studies. The obtained BC displayed an altered micro-structure, degree of porosity, and water-related parameters in comparison to the non-treated, control BC samples. The observed effects were correlated to the duration and the time of magnetic exposure during K. xylinus cultivation. The most preferred properties in terms of water-related properties were found for BC obtained in the setting, where RMF generator was switched off for the first 72 h of cultivation and switched on for the next 72 h. The described method of BC synthesis may be of special interest for the production of absorbent, antimicrobial-soaked dressings and carrier supports for the immobilization of microorganisms and proteins.


Subject(s)
Acetobacteraceae/metabolism , Cellulose/biosynthesis , Cellulose/chemistry , Magnetic Fields , Rotation , Water/analysis , Porosity , Time Factors
13.
Carbohydr Polym ; 133: 52-60, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26344254

ABSTRACT

The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds.


Subject(s)
Cellulose/biosynthesis , Gluconacetobacter xylinus/metabolism , Magnetic Fields , Rotation , Glucose/metabolism
14.
Electromagn Biol Med ; 34(1): 48-55, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24460420

ABSTRACT

The aim of the present study was to determine the effect of the rotating magnetic field (RMF) on the growth, cell metabolic activity and biofilm formation by S. aureus, E. coli, A. baumannii, P. aeruginosa, S. marcescens, S. mutans, C. sakazakii, K. oxytoca and S. xylosus. Bacteria were exposed to the RMF (RMF magnetic induction B = 25-34 mT, RMF frequency f = 5-50 Hz, time of exposure t = 60 min, temperature of incubation 37 °C). The persistence of the effect of exposure (B = 34 mT, f = 50 Hz, t = 60 min) on bacteria after further incubation (t = 300 min) was also studied. The work showed that exposure to RMF stimulated the investigated parameters of S. aureus, E. coli, S. marcescens, S. mutans, C. sakazakii, K. oxytoca and S. xylosus, however inhibited cell metabolic activity and biofilm formation by A. baumannii and P. aeruginosa. The results obtained in this study proved, that the RMF, depending on its magnetic induction and frequency can modulate functional parameters of different species of bacteria.


Subject(s)
Bacterial Physiological Phenomena , Magnetic Fields , Rotation , Bacteria/cytology , Bacteria/growth & development , Bacteria/metabolism , Biofilms/growth & development , Optical Phenomena
15.
Electromagn Biol Med ; 33(1): 29-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23713419

ABSTRACT

This study presents results of research on the influence of rotating magnetic field (RMF) of the induction of 30 mT and the frequency of 50 Hz on the growth dynamics and cell metabolic activity of E. coli and S. aureus, depending on the exposure time. The studies showed that the RMF caused an increase in the growth and cell metabolic activity of all the analyzed bacterial strains, especially in the time interval t = 30 to 150 min. However, it was also found that the optical density and cell metabolic activity after exposition to RMF were significantly higher in S. aureus cultures. In turn, the study of growth dynamics, revealed a rapid and a significant decrease in these values from t = 90 min) in the case of E. coli samples. The obtained results prove that RMF (B = 30 mT, f = 50 Hz) has a stimulatory effect on the growth and metabolic activity of E. coli and S. aureus. Furthermore, taking into account the time of exposure, stronger influence of RMF on the viability was observed in S. aureus cultures, which may indicate that this effect depends on the shape of the exposed cells.


Subject(s)
Escherichia coli/physiology , Magnetic Fields/adverse effects , Microbial Viability , Rotation , Staphylococcus aureus/physiology , Escherichia coli/cytology , Escherichia coli/growth & development , Escherichia coli/metabolism , Staphylococcus aureus/cytology , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Time Factors
16.
Int J Radiat Biol ; 84(9): 752-60, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18821389

ABSTRACT

PURPOSE: The aim of the study was to analyze the influence of rotating magnetic fields (RMF) on the expression and intranuclear distribution of nucleolin, protein involved in ribosome biosynthesis, in HL-60 (acute promyelocytic leukemia) and K-562 (chronic myelogenous leukemia) established human cell lines. MATERIALS AND METHODS: Cells were exposed to RMF for two chosen states of the magnetic field induction: B=10 mT and B=20 mT in experimental set-up for 30 min with 24-h intervals for four days. Cytospin slides were prepared and expression of nucleolin was detected using monoclonal antibodies. Parameters of fluorescence related to nucleolin were measured in at least 2000 tumor cells in each slide by a laser scanning cytometer with an argon laser. Percentages of cells in different phases of cell cycle were also analyzed. RESULTS: The repeated exposition of cells to RMF caused significant increase in nucleolin expression in the whole nucleus and in the nucleolin aggregates (NUA). The redistribution of nucleolin measured by changes in number of NUA was also observed. The exposition of both cell lines studied to RMF did not alter the cell cycle. CONCLUSION: The nucleolin is responsive to RMF in HL-60 and K-562. The increase of its expression may indicate a reaction of cells to RMF and it may influence their other biological properties.


Subject(s)
Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Environmental Exposure , Gene Expression Regulation/radiation effects , Magnetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Rotation , Cell Cycle/radiation effects , HL-60 Cells , Humans , K562 Cells , Reference Standards , Time Factors , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...