Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(24)2019 Dec 08.
Article in English | MEDLINE | ID: mdl-31817961

ABSTRACT

Interest in the Mn+1AXn phases (M = early transition metal; A = group 13-16 elements, and X = C or N) is driven by their ceramic and metallic properties, which make them attractive candidates for numerous applications. In the present study, we use the density functional theory to calculate the elastic properties and the incorporation of lithium atoms in the 312 MAX phases. It is shown that the energy to incorporate one Li atom in Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 is particularly low, and thus, theoretically, these materials should be considered for battery applications.

2.
Sci Rep ; 8(1): 12790, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30143656

ABSTRACT

Anatase titanium oxide is important for its high chemical stability and photocatalytic properties, however, the latter are plagued by its large band gap that limits its activity to only a small percentage of the solar spectrum. In that respect, straining the material can reduce its band gap increasing the photocatalytic activity of titanium oxide. We apply density functional theory with the introduction of the Hubbard + U model, to investigate the impact of stress on the electronic structure of anatase in conjunction with defect engineering by intrinsic defects (oxygen/titanium vacancies and interstitials), metallic dopants (iron, chromium) and non-metallic dopants (carbon, nitrogen). Here we show that both biaxial and uniaxial strain can reduce the band gap of undoped anatase with the use of biaxial strain being marginally more beneficial reducing the band gap up to 2.96 eV at a tensile stress of 8 GPa. Biaxial tensile stress in parallel with doping results in reduction of the band gap but also in the introduction of states deep inside the band gap mainly for interstitially doped anatase. Dopants in substitutional positions show reduced deep level traps. Chromium-doped anatase at a tensile stress of 8 GPa shows the most significant reduction of the band gap as the band gap reaches 2.4 eV.

3.
J Nanosci Nanotechnol ; 12(8): 6240-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22962731

ABSTRACT

CoPd is an important nanomaterial for magnetic and magneto-optic storage of information. In this work, CoPd alloyed thin films are grown via radio frequency magnetron sputtering on silicon, glass and polyimide substrates in a vacuum chamber with base pressure of 5 x 10(-8) mbar. The films are nanocrystalline with grain size between 4 and 80 nm. The magnetic properties of thoroughly textured CoPd alloyed thin films are compared to random polycrystalline ones. Magnetization hysteresis loops recorded under fields up to 12 kOe via a home-made magneto-optic Kerr-effect magnetometer reveal strong tendency for perpendicular magnetic anisotropy for the textured film. This anisotropy leads to the formation of well-defined stripe or labyrinthine ferromagnetic domains with the local spins oriented perpendicular to the film plane. The domain patterns and the hysteresis loops are simulated with micromagnetic calculations. Finally, an induced magnetic moment of 0.44 microB/atom is measured for Pd via X-ray magnetic circular dichroism and it is separated into spin and orbital magnetic moment contributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...