Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257503

ABSTRACT

It has been proven that structural damage can be successfully identified using trendlines of structural acceleration responses. In previous numerical and experimental studies, the Savitzky-Golay filter and moving average filter were adjusted to determine suitable trendlines and locate structural damage in a simply supported bridge. In this study, the quadratic regression technique was studied and employed to calculate the trendlines of the bridge acceleration responses. The normalized energies of the resulting trendlines were then used as a damage index to identify the location and severity of the structural bridge damage. An ABAQUS model of a 25 m simply supported bridge under a truckload with different velocities was used to verify the accuracy of the proposed method. The structural damage was numerically modeled as cracks at the bottom of the bridge, so the stiffness at the damage positions was decreased accordingly. Four different velocities from 1 m/s to 8 m/s were used. The proposed method can identify structural damage in noisy environments without monitoring the dynamic modal parameters. Moreover, the accuracy of the newly proposed trendline-based method was increased compared to the previous method. For velocities up to 4 m/s, the damage in all single- and multiple-damage scenarios was successfully identified. For the velocity of 8 m/s, the damage in some scenarios was not located accurately. Additionally, it should be noted that the proposed method can be categorized as an online, quick, and baseline-free structural damage-detection method.

2.
Eur Phys J Spec Top ; 231(18-20): 3427-3437, 2022.
Article in English | MEDLINE | ID: mdl-35371394

ABSTRACT

This paper presents a dynamic system for estimating the spreading profile of COVID-19 in Thailand, taking into account the effects of vaccination and social distancing. For this purpose, a compartmental network is built in which the population is divided into nine mutually exclusive nodes, including susceptible, insusceptible, exposed, infected, vaccinated, recovered, quarantined, hospitalized, and dead. The weight of edges denotes the interaction between the nodes, modeled by a series of conversion rates. Next, the compartmental network and corresponding rates are incorporated into a system of fractional partial differential equations to define the model governing the problem concerned. The fractional degree corresponding to each compartment is considered the node weight in the proposed network. Next, a Monte Carlo-based optimization method is proposed to fit the fractional compartmental network to the actual COVID-19 data of Thailand collected from the World Health Organization. Further, a sensitivity analysis is conducted on the node weights, i.e., fractional orders, to reveal their effect on the accuracy of the fit and model predictions. The results show that the flexibility of the model to adapt to the observed data is markedly improved by lowering the order of the differential equations from unity to a fractional order. The final results show that, assuming the current pandemic situation, the number of infected, recovered, and dead cases in Thailand will, respectively, reach 4300, 4.5 × 10 6 , and 36,000 by the end of 2021.

3.
Entropy (Basel) ; 23(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34681991

ABSTRACT

Predicting the way diseases spread in different societies has been thus far documented as one of the most important tools for control strategies and policy-making during a pandemic. This study is to propose a network autoregressive (NAR) model to forecast the number of total currently infected cases with coronavirus disease 2019 (COVID-19) in Iran until the end of December 2021 in view of the disease interactions within the neighboring countries in the region. For this purpose, the COVID-19 data were initially collected for seven regional nations, including Iran, Turkey, Iraq, Azerbaijan, Armenia, Afghanistan, and Pakistan. Thenceforth, a network was established over these countries, and the correlation of the disease data was calculated. Upon introducing the main structure of the NAR model, a mathematical platform was subsequently provided to further incorporate the correlation matrix into the prediction process. In addition, the maximum likelihood estimation (MLE) was utilized to determine the model parameters and optimize the forecasting accuracy. Thereafter, the number of infected cases up to December 2021 in Iran was predicted by importing the correlation matrix into the NAR model formed to observe the impact of the disease interactions in the neighboring countries. In addition, the autoregressive integrated moving average (ARIMA) was used as a benchmark to compare and validate the NAR model outcomes. The results reveal that COVID-19 data in Iran have passed the fifth peak and continue on a downward trend to bring the number of total currently infected cases below 480,000 by the end of 2021. Additionally, 20%, 50%, 80% and 95% quantiles are provided along with the point estimation to model the uncertainty in the forecast.

4.
Sensors (Basel) ; 20(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252264

ABSTRACT

The Savitzky-Golay filter (SGF) is a time-domain technique that determines a trend line for a signal. The direct application of SGF for damage localization and quantification is investigated in this paper. Therefore, a single-stage trend line-based damage detection method employing SGF is proposed in which the damage is located and quantified at the bridge under moving load. A simply supported beam under moving sprung mass is numerically simulated to verify the proposed method. Four different velocities and five different single- and multi-damage scenarios are considered. The acceleration data along the beam are obtained, manually polluted with noise and their trend lines are then determined using SGF. The results show that the proposed method can accurately locate and quantify the damage using these trend lines. It is proved that the proposed method is insensitive to the noise and velocity variation in which having a constant velocity is a hard task before and after damage. Additionally, defining a normalization factor and fitting a Gaussian curve to this factor provide an estimation for the baseline and therefore, it categorizes the proposed method as baseline-free method.

5.
Sensors (Basel) ; 20(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906193

ABSTRACT

In this paper, a two-stage time-domain output-only damage detection method is proposed with a new energy-based damage index. In the first stage, the random decrement technique (RDT) is employed to calculate the random decrement signatures (RDSs) from the acceleration responses of a simply supported beam subjected to a moving load. The RDSs are then filtered using the Savitzky-Golay filter (SGF) in the second stage. Next, the filtered RDSs are processed by the proposed energy-based damage index to locate and quantify the intensity of the possible damage. Finally, by fitting a Gaussian curve to the damage index resulted from the non-damage conditions, the whole process is systematically implemented as a baseline-free method. The proposed method is numerically verified using a simply supported beam under moving sprung mass with different velocities and damage scenarios. The results show that the proposed method can accurately estimate the damage location/quantification from the acceleration data without any prior knowledge of either input load or damage characteristics. Additionally, the proposed method is neither sensitive to noise nor velocity variation, which makes it ideal when obtaining a constant velocity is difficult.

SELECTION OF CITATIONS
SEARCH DETAIL
...