Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(17)2022 08 31.
Article in English | MEDLINE | ID: mdl-36078127

ABSTRACT

The emergence of drug resistance in cancer poses the greatest hurdle for successful therapeutic results and is associated with most cancer deaths. In triple negative breast cancer (TNBC), due to the lack of specific therapeutic targets, systemic chemotherapy is at the forefront of treatments, but it only benefits a fraction of patients because of the development of resistance. Cancer cells may possess an innate resistance to chemotherapeutic agents or develop new mechanisms of acquired resistance after long-term drug exposure. Such mechanisms involve an interplay between genetic, epigenetic and metabolic alterations that enable cancer cells to evade therapy. In this work, we generated and characterized a chemoresistant TNBC cell line to be used for the investigation of mechanisms that drive resistance to paclitaxel. Transcriptomic analysis highlighted the important role of metabolic-associated pathways in the resistant cells, prompting us to employ 1H-NMR to explore the metabolome and lipidome of these cells. We identified and described herein numerous metabolites and lipids that were significantly altered in the resistant cells. Integrated analysis of our omics data revealed MSMO1, an intermediate enzyme of cholesterol biosynthesis, as a novel mediator of chemoresistance in TNBC. Overall, our data provide a critical insight into the metabolic adaptations that accompany acquired resistance in TNBC and pinpoint potential new targets.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
2.
Dalton Trans ; 51(36): 13808-13825, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36039685

ABSTRACT

The novel binuclear η6-arene-Ru(II) complexes with the general formula {[(η6-cym)Ru(L)]2(µ-BL)}(PF6)4, and their corresponding water soluble {[(η6-cym)Ru(L)]2(µ-BL)}Cl4, where cym = p-cymene, L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), BL = 4,4'-bipyridine (BL-1), 1,2-bis(4-pyridyl)ethane (BL-2) and 1,3-bis(4-pyridyl)propane (BL-3), were synthesized and characterized. The structure of {[(η6-cym)Ru(phen)]2(µ-BL-1)}(PF6)4 was determined by X-ray single crystal methods. The interaction of {[(η6-cym)Ru(phen)]2(µ-BL-i)}Cl4 (i = 1, 2, 3; (4), (5) and (6) correspondingly) with the DNA duplex d(5'-CGCGAATTCGCG-3')2 was studied by means of NMR techniques and fluorescence titrations. The results show that complex (4) binds with a Kb = 12.133 × 103 M-1 through both intercalation and groove binding, while (5) and (6) are groove binders (Kb = 2.333 × 103 M-1 and Kb = 3.336 × 103 M-1 correspondingly). Comparison with the mononuclear complex [(η6-cym)Ru(phen)(py)]2+ reveals that it binds to the d(5'-CGCGAATTCGCG-3')2 with a Kb value two orders of magnitude lower than (4) (Kb = 0.158 × 103 M-1), indicating that for the binuclear complexes both ruthenium moieties participate in the binding. The complexes were found to be cytotoxic against the A2780 and A2780 res. cancer cell line with a selectivity index (SI) in the range of 3.0-5.9.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Ruthenium , 2,2'-Dipyridyl/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , DNA/chemistry , Ethane , Female , Humans , Ovarian Neoplasms/drug therapy , Phenanthrolines , Ruthenium/chemistry , Water
3.
Biomedicines ; 9(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34680485

ABSTRACT

Cancer stem cells (CSCs) have been implicated in the development of chemoresistance, tumor recurrence and metastasis in breast cancer, thus emerging as a promising target for novel therapies. To identify novel stemness regulators that could potentially be targeted in luminal ER+ tumors, we performed RNA-sequencing (RNA-seq) in MCF-7 adherent monolayer cells and tumorspheres enriched in breast CSCs (bCSCs). We identified 1421 differentially expressed genes (DEGs), with 923 of them being upregulated and 498 downregulated in tumorspheres. Gene ontology and pathway enrichment analyses revealed that distinct gene networks underlie the biology of the two cell systems. We selected the transient receptor potential cation channel subfamily M member 4 (TRPM4) gene that had not been associated with cancer stemness before for further investigation. We confirmed that TRPM4 was overexpressed in tumorspheres and showed that its knock-down affected the stemness properties of bCSCs in vitro. TRPM4 inhibition revealed potential anti-tumor effects by directly targeting the bCSC subpopulation. We suggest that TRPM4 plays a key role in stemness mediation, and its inhibition may represent a novel therapeutic modality against bCSCs contributing in the improvement of breast cancer treatments.

4.
Cancers (Basel) ; 11(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627418

ABSTRACT

Breast cancer is the leading cause of cancer death in the female population, despite advances in diagnosis and treatment. The highly heterogeneous nature of the disease represents a major obstacle to successful therapy and results in a significant number of patients developing drug resistance and, eventually, suffering from tumor relapse. Cancer stem cells (CSCs) are a small subset of tumor cells characterized by self-renewal, increased tumor-initiation capacity, and resistance to conventional therapies. As such, they have been implicated in the etiology of tumor recurrence and have emerged as promising targets for the development of novel therapies. Here, we show that the histone demethylase lysine-specific demethylase 1 (LSD1) plays an important role in the chemoresistance of breast cancer cells. Our data, from a series of in vitro and in vivo assays, advocate for LSD1 being critical in maintaining a pool of tumor-initiating cells that may contribute to the development of drug resistance. Combinatory administration of LSD1 inhibitors and anti-cancer drugs is more efficacious than monotherapy alone in eliminating all tumor cells in a 3D spheroid system. In conclusion, we provide compelling evidence that LSD1 is a key regulator of breast cancer stemness and a potential target for the design of future combination therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...