Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0296132, 2023.
Article in English | MEDLINE | ID: mdl-38153949

ABSTRACT

Edwardsiella ictaluri is a Gram-negative facultative intracellular fish pathogen causing enteric septicemia of catfish (ESC). While various secretion systems contribute to E. ictaluri virulence, the Type VI secretion system (T6SS) remains poorly understood. In this study, we constructed 13 E. ictaluri T6SS mutants using splicing by overlap extension PCR and characterized them, assessing their uptake and survival in channel catfish (Ictalurus punctatus) peritoneal macrophages, attachment and invasion in channel catfish ovary (CCO) cells, in vitro stress resistance, and virulence and efficacy in channel catfish. Among the mutants, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO exhibited reduced replication inside peritoneal macrophages. EiΔevpM, EiΔevpN, and EiΔevpO showed significantly decreased attachment to CCO cells, while EiΔevpN and EiΔevpO also displayed reduced invasion of CCO cells (p < 0.05). Overall, T6SS mutants demonstrated enhanced resistance to oxidative and nitrosative stress in the nutrient-rich medium compared to the minimal medium. However, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO were susceptible to oxidative stress in both nutrient-rich and minimal medium. In fish challenges, EiΔevpD, EiΔevpE, EiΔevpG, EiΔevpJ, and EiΔevpK exhibited attenuation and provided effective protection against E. ictaluri wild-type (EiWT) infection in catfish fingerlings. However, their attenuation and protective efficacy were lower in catfish fry. These findings shed light on the role of the T6SS in E. ictaluri pathogenesis, highlighting its significance in intracellular survival, host cell attachment and invasion, stress resistance, and virulence. The attenuated T6SS mutants hold promise as potential candidates for protective immunization strategies in catfish fingerlings.


Subject(s)
Catfishes , Enterobacteriaceae Infections , Fish Diseases , Ictaluridae , Type VI Secretion Systems , Animals , Edwardsiella ictaluri/genetics , Type VI Secretion Systems/genetics , Virulence , Fish Diseases/prevention & control
2.
Front Vet Sci ; 8: 681609, 2021.
Article in English | MEDLINE | ID: mdl-34150898

ABSTRACT

Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC), a devastating disease resulting in significant economic losses in the U.S. catfish industry. Bacterial secretion systems are involved in many bacteria's virulence, and Type VI Secretion System (T6SS) is a critical apparatus utilized by several pathogenic Gram-negative bacteria. E. ictaluri strain 93-146 genome has a complete T6SS operon with 16 genes, but the roles of these genes are still not explored. In this research, we aimed to understand the roles of two hemolysin co-regulated family proteins, Hcp1 (EvpC) and Hcp2. To achieve this goal, single and double E. ictaluri mutants (EiΔevpC, EiΔhcp2, and EiΔevpCΔhcp2) were generated and characterized. Catfish peritoneal macrophages were able to kill EiΔhcp2 better than EiΔevpC, EiΔevpCΔhcp2, and E. ictaluri wild-type (EiWT). The attachment of EiΔhcp2 and EiΔevpCΔhcp2 to ovary cells significantly decreased compared to EiWT whereas the cell invasion rates of these mutants were the same as that of EiWT. Mutants exposed to normal catfish serum in vitro showed serum resistance. The fish challenges demonstrated that EiΔevpC and EiΔevpCΔhcp2 were attenuated completely and provided excellent protection against EiWT infection in catfish fingerlings. Interestingly, EiΔhcp2 caused higher mortality than that of EiWT in catfish fingerlings, and severe clinical signs were observed. Although fry were more susceptible to vaccination with EiΔevpC and EiΔevpCΔhcp2, their attenuation and protection were significantly higher compared to EiWT and sham groups, respectively. Taken together, our data indicated that evpC (hcp1) is involved in E. ictaluri virulence in catfish while hcp2 is involved in adhesion to epithelial cells and survival inside catfish macrophages.

3.
Dev Comp Immunol ; 116: 103950, 2021 03.
Article in English | MEDLINE | ID: mdl-33253752

ABSTRACT

We extend the previous findings on the differential activity of immune-related genes in the lymphoid organs of channel catfish in the 7 days post-challenge (dpc) with E. ictaluri live attenuated vaccines (LAVs) and wild type (WT) strains by assessing the expression of these genes in the 21 dpc. The expression of T and B cell-specific genes were significantly elevated in the spleen at 14 dpc and in the AK at 21 dpc in catfish treated with E. ictaluri WT and LAV strains compared to a non-treated control group. The gene expression of IFN-γ correlated with adaptive immunity genes in the lymphoid tissues of catfish. These data indicate that two novel LAVs were able to trigger the activation of T helper1 polarization cytokine IFN-γ gene and specific lymphocyte genes in the spleen followed by their activation in the AK of catfish without causing inflammation, thus providing protective immunity in E. ictaluri infection.


Subject(s)
Adaptive Immunity , Bacterial Vaccines/immunology , Edwardsiella ictaluri/immunology , Enterobacteriaceae Infections/veterinary , Fish Diseases/immunology , Ictaluridae/immunology , Adaptive Immunity/genetics , Animals , Bacterial Vaccines/administration & dosage , Cytokines/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Fish Diseases/microbiology , Fish Diseases/prevention & control , Ictaluridae/microbiology , Kidney/immunology , Spleen/immunology , Transcriptome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
4.
Dev Comp Immunol ; 109: 103711, 2020 08.
Article in English | MEDLINE | ID: mdl-32311387

ABSTRACT

Edwardsiella ictaluri causes enteric septicemia of catfish. Our group developed two E. ictaluri live attenuated vaccines (LAVs). However, their effects on the innate functions of catfish B cells are still unexplored. We evaluated phagocytosis and killing of wild-type (WT) E. ictaluri opsonized with sera from vaccinated fish and the survival of B cells exposed to E. ictaluri strains. We assessed phagocytosis of the opsonized WT at 30 °C and 4 °C. B cells killed the internalized E. ictaluri opsonized with sera from vaccinated fish with LAVs more efficiently than other groups at 30 °C. However, catfish B cells were unable to destroy E. ictaluri at 4 °C. Furthermore, E. ictaluri opsonized with serum from fish exposed to WT induce apoptosis and decreased live B cells numbers. Results indicate that opsonization of E. ictaluri with sera from vaccinated fish enhanced phagocytosis and killing activity in B cells and inhibited apoptotic changes in the infected B cells.


Subject(s)
B-Lymphocytes/immunology , Bacterial Vaccines/immunology , Catfishes/immunology , Edwardsiella ictaluri/immunology , Fish Diseases/immunology , Immunity, Innate/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Animals , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/cytology , B-Lymphocytes/microbiology , Bacterial Vaccines/administration & dosage , Catfishes/microbiology , Edwardsiella ictaluri/physiology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Immunity, Innate/drug effects , Phagocytosis/drug effects , Phagocytosis/immunology , Protective Agents/administration & dosage , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
5.
Cell Microbiol ; 22(3): e13135, 2020 03.
Article in English | MEDLINE | ID: mdl-31742869

ABSTRACT

Edwardsiella ictaluri is a Gram-negative facultative anaerobe that can survive inside channel catfish phagocytes. E. ictaluri can orchestrate Type VI Secretion System (T6SS) for survival in catfish macrophages. evpP encodes one of the T6SS translocated effector proteins. However, the role of evpP in E. ictaluri is still unexplored. In this work, we constructed an E. ictaluri evpP mutant (EiΔevpP) and assessed its survival under complement and oxidative stress. Persistence of EiΔevpP in catfish as well as attachment and invasion in catfish macrophage and ovary cells were determined. Further, virulence of EiΔevpP in catfish and apoptosis it caused in macrophages were explored. EiΔevpP behaved same as wild type (EiWT) under complement and oxidative stress in complex media, whereas oxidative stress affected mutant's survival significantly in minimal media (p < .05). Persistence of EiΔevpP in live catfish and uptake and survival inside peritoneal macrophages were similar. The attachment and invasion capabilities of EiΔevpP in catfish ovary cells were significantly less than that of EiWT (p < .05). Although EiΔevpP showed reduced attenuation in catfish, causing decreased catfish mortality compared with EiWT (44.73% vs. 67.53%), this difference was not significant. The apoptosis assay using anterior kidney macrophages indicated that the number of live macrophages exposed to EiΔevpP was significantly higher compared with EiWT exposed macrophages at 24-hr post-treatment (p < .05). However, there were no significant differences in the early and late apoptosis. Remarkably, necrosis in EiΔevpP exposed macrophages was significantly less than that of EiWT exposed macrophages at 24 hr (p < .05). Our results demonstrated that evpP is required for colonisation of catfish ovary cells and increased apoptosis and necrosis in anterior kidney macrophages.


Subject(s)
Edwardsiella ictaluri/physiology , Ictaluridae/microbiology , Macrophages/microbiology , Macrophages/physiology , Necrosis/microbiology , Ovary/microbiology , Animals , Apoptosis , Bacterial Proteins , Enterobacteriaceae Infections/microbiology , Female , Fish Diseases/microbiology , Genes, Bacterial , Head Kidney/microbiology , Mutation , Oxidative Stress , Type VI Secretion Systems/metabolism , Virulence
6.
Front Immunol ; 10: 2383, 2019.
Article in English | MEDLINE | ID: mdl-31649682

ABSTRACT

Edwardsiella ictaluri, a Gram-negative facultative intracellular pathogen, is the causative agent of enteric septicemia of catfish (ESC). The innate functions of B cells have been demonstrated in several teleost fish, including zebrafish, rainbow trout, and channel catfish. Recently, our group has developed several protective E. ictaluri live attenuated vaccines (LAVs). However, the innate role of catfish B cells to phagocytose and destroy E. ictaluri wild-type (WT) and live attenuated vaccine (LAV) strains has not been evaluated. In this study, we assessed the efficacy of E. ictaluri WT and two LAVs on phagocytosis, microbial killing, and survival of catfish anterior kidney (AK) B cells. Initially, we documented active uptake of E. ictaluri WT and two LAVs in B cells by flow cytometry and light microscopy. Then, we observed the E. ictaluri strains-induced phagosome and/or phagolysosome formation in the cytoplasm of catfish magnetically sorted IgM+ B cells. Furthermore, we demonstrated that AK B cells were able to destroy the internalized E. ictaluri WT and LAV strains efficiently. Finally, we documented early and late apoptotic/necrotic manifestations induced by E. ictaluri in catfish AK B cells. In conclusion, our results suggest that both LAVs and WT strain initiate similar innate immune responses such as active phagocytic uptake, induced bactericidal activity as well as promote early and late apoptotic changes in catfish B cells. Our data suggest that phagocytic and microbicidal B cells may serve as professional APCs in initiation of protective adaptive immune responses against ESC in channel catfish.


Subject(s)
Bacterial Vaccines/pharmacology , Edwardsiella ictaluri/immunology , Enterobacteriaceae Infections/prevention & control , Fish Diseases/prevention & control , Ictaluridae , Phagocytosis/drug effects , Animals , Bacterial Vaccines/immunology , Enterobacteriaceae Infections/immunology , Fish Diseases/immunology , Ictaluridae/immunology , Ictaluridae/microbiology , Vaccines, Attenuated/pharmacology
7.
Front Immunol ; 10: 392, 2019.
Article in English | MEDLINE | ID: mdl-30894864

ABSTRACT

Edwardsiella ictaluri is a Gram-negative intracellular pathogen that causes enteric septicemia of catfish (ESC). Successful vaccination against intracellular pathogens requires T cell priming by antigen presenting cells (APCs) that bridge innate and adaptive immunity. However, the evidence on immunological mechanisms that underscore E. ictaluri pathogenesis and the protective role of live attenuated vaccines (LAVs) is scarce. We assessed the expression of immune genes related to antigen presentation by real-time PCR and the distribution patterns of Langerhans-like (L/CD207+) cells by immunohistochemistry in the immune-related tissues of channel catfish challenged with two novel E. ictaluri LAVs, EiΔevpB, and ESC-NDKL1 and wild type (WT) strain. Our results indicated significantly elevated expression of IFN-γ gene in the anterior kidney (AK) and spleen of vaccinated catfish at the early stages of exposure, which correlated with increased numbers of L/CD207+ cells. In general, the ESC-NDKL1-induced IFN-γ gene expression patterns in the AK resembled that of the patterns induced by EiΔevpB. However the MHCII gene expression patterns differed between the strains with significant increases at 6 h post-challenge (pc) with the EiΔevpB and at 7 d pc with the ESC-NDKL1 strains, respectively. Significant increases in activity of T helper type polarization genes such as IFN-γ and T cell co-receptors after exposure to ESC-NDKL1, in combination with elevated numbers of L/CD207+ cells at 7 d pc with both LAVs compared to uninfected and the WT-exposed counterparts, were documented in the spleen. The dominant pro-inflammatory environment with dramatically overexpressed inflammatory genes in the AK and 7 d pc in the spleen in response to E. ictaluri was found in exposed catfish. In general, the pro-inflammatory gene expression profiles in the ESC-NDKL1 pc showed more similarities to the WT strain-induced gene profiles compared to the EiΔevpB counterpart. In addition, E. ictaluri WT significantly decreased the numbers of Langerhans-like L/CD207+ cells in the AK and spleen at 3 and 7 days pc. In conclusion, we report the differential framework of initiation of innate and adaptive immune responses between E. ictaluri strains with both LAVs having a potential of satisfying the stringent requirements for successful vaccines.


Subject(s)
Bacterial Vaccines/immunology , Edwardsiella ictaluri/immunology , Enterobacteriaceae Infections/veterinary , Fish Diseases/immunology , Ictaluridae/immunology , Animals , Fish Diseases/prevention & control , Langerhans Cells/immunology , Lymphoid Tissue/immunology , Vaccines, Attenuated/immunology
8.
Front Microbiol ; 8: 2638, 2017.
Article in English | MEDLINE | ID: mdl-29375507

ABSTRACT

Edwardsiella ictaluri (E. ictaluri), a Gram-negative, intracellular, facultative bacterium, is the causative agent of enteric septicemia of catfish (ESC), which is one of the most significant diseases of farmed channel catfish. Macrophages have a critical role in major defense mechanisms against bacterial infections by migrating to the site of infection, engulfing and killing pathogens, and priming adaptive immune responses. Vaccination of catfish with E. ictaluri live attenuated vaccine (LAV) strains increased the efficiency of phagocytosis and bacterial killing in catfish peritoneal macrophages compared in vitro with macrophages from non-vaccinated fish. Recently, our group developed several protective LAV strains from E. ictaluri. However, their effects on the antigen uptake and bacterial killing in catfish macrophages have not been evaluated. In this study, we assessed the phagocytic and bactericidal activity of peritoneal macrophages in the uptake of E. ictaluri wild-type (WT) and two LAV strains. We found that phagocytosis of LAV strains was significantly higher compared to their WT counterpart in peritoneal macrophages. Moreover, the uptake of E. ictaluri opsonized with sera from vaccinated catfish was more efficient than when opsonized with sera from sham-vaccinated fish. Notably, catfish macrophages did not lose their phagocytic properties at 4°C, as described previously in mammalian and zebrafish models. Also, opsonization of E. ictaluri with inactivated sera from vaccinated and sham-vaccinated catfish decreased significantly phagocytic uptake of bacteria at 32°C, and virtually suppressed endocytosis at 4°C, suggesting the important role of complement-dependent mechanisms in catfish macrophage phagocytosis. In conclusion, our data on enhanced phagocytic capacity and effective killing ability in macrophages of vaccine strains suggested the LAVs' advantage if processed and presented in the form of peptides to specific lymphocytes of an adaptive immune system and emphasize the importance of macrophage-mediated immunity against ESC. Furthermore, we showed the role of complement-dependent mechanisms in the phagocytic uptakes of E. ictaluri in catfish peritoneal macrophages at 4 and 32°C. Finally, LAV vaccine-induced bacterial phagocytosis and killing properties of peritoneal macrophages emphasized the importance of the innate immune responses in ESC.

9.
Fish Shellfish Immunol ; 58: 253-258, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27645905

ABSTRACT

Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs) that have a critical role in bridging innate and adaptive immune responses in vertebrates. Dendritic cells have been characterized morphologically and functionally in the teleost fish models such as rainbow trout, salmonids, medaka, and zebrafish. The presence of DCs with remarkable similarities to human Langerhans cells (LCs) has been described in the spleen and anterior kidney of salmonids and rainbow trout. However, there is no evidence of the presence of DCs and their role in channel catfish immunity. In this study, we assessed DC-like cells in the immunocompetent tissues of channel catfish by immunohistochemistry (IHC), flow cytometry and transmission electron microscopy (TEM). We identified Langerin/CD207+ (L/CD207+) cells in the channel catfish anterior kidney, spleen and gill by IHC. Moreover, we described the cells that resembled mammal LC DCs containing Birbeck-like (BL) granules in channel catfish spleen, anterior and posterior kidneys and gill by TEM. Our data suggest that cells with DC-like morphology in the immune related organs of catfish may share morphological and functional properties with previously reported DCs in teleost fish and mammals. More detailed knowledge of the phenotype and the function of catfish DCs will not only help gain insight into the evolution of the vertebrate adaptive immune system but will also provide valuable information for development and optimization of immunotherapies and vaccination protocols for aquaculture use.


Subject(s)
Ictaluridae/anatomy & histology , Langerhans Cells/cytology , Animals , Flow Cytometry/veterinary , Gills/cytology , Gills/immunology , Gills/ultrastructure , Ictaluridae/immunology , Immunohistochemistry/veterinary , Kidney/cytology , Kidney/immunology , Kidney/ultrastructure , Langerhans Cells/ultrastructure , Microscopy, Electron, Transmission/veterinary , Spleen/cytology , Spleen/immunology , Spleen/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...