Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(11): e2116254119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254895

ABSTRACT

SignificanceTranscription-coupled repair (TCR) involves four core proteins: CSA, CSB, USP7, and UVSSA. CSA and CSB are mutated in the severe human neurocutaneous disease Cockayne syndrome. In contrast UVSSA is a mild photosensitive disease in which a mutated protein sequence prevents recruitment of USP7 protease to deubiquitinate and stabilize CSB. We deleted the UVSSA protein using CRISPR-Cas9 in an aneuploid cell line, HEK293, and determined the functional consequences. The knockout cell line was sensitive to transcription-blocking lesions but not sensitive to oxidative agents or PARP inhibitors, unlike CSB. Knockout of UVSSA also activated ATM, like CSB, in transcription-arrested cells. The phenotype of UVSSA, especially its rarity, suggests that many TCR-deficient patients and tumors fail to be recognized clinically.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/metabolism , DNA Repair , Homeostasis , Signal Transduction , Transcription, Genetic , Alkylating Agents/pharmacology , Amino Acid Sequence , Carrier Proteins/chemistry , DNA Damage/drug effects , DNA Damage/radiation effects , HEK293 Cells , Humans , Mutagens/pharmacology , Signal Transduction/drug effects , Ultraviolet Rays
2.
Nucleic Acids Res ; 48(3): e14, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31832687

ABSTRACT

We here describe a technique termed STRIDE (SensiTive Recognition of Individual DNA Ends), which enables highly sensitive, specific, direct in situ detection of single- or double-strand DNA breaks (sSTRIDE or dSTRIDE), in nuclei of single cells, using fluorescence microscopy. The sensitivity of STRIDE was tested using a specially developed CRISPR/Cas9 DNA damage induction system, capable of inducing small clusters or individual single- or double-strand breaks. STRIDE exhibits significantly higher sensitivity and specificity of detection of DNA breaks than the commonly used terminal deoxynucleotidyl transferase dUTP nick-end labeling assay or methods based on monitoring of recruitment of repair proteins or histone modifications at the damage site (e.g. γH2AX). Even individual genome site-specific DNA double-strand cuts induced by CRISPR/Cas9, as well as individual single-strand DNA scissions induced by the nickase version of Cas9, can be detected by STRIDE and precisely localized within the cell nucleus. We further show that STRIDE can detect low-level spontaneous DNA damage, including age-related DNA lesions, DNA breaks induced by several agents (bleomycin, doxorubicin, topotecan, hydrogen peroxide, UV, photosensitized reactions) and fragmentation of DNA in human spermatozoa. The STRIDE methods are potentially useful in studies of mechanisms of DNA damage induction and repair in cell lines and primary cultures, including cells with impaired repair mechanisms.


Subject(s)
DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , Microscopy, Fluorescence , CRISPR-Associated Protein 9 , Cell Line , Cells, Cultured , Fluorescent Dyes , HeLa Cells , Humans , Nucleic Acid Hybridization , Oligonucleotide Probes , Tissue Fixation
3.
FASEB J ; 33(2): 2301-2313, 2019 02.
Article in English | MEDLINE | ID: mdl-30260704

ABSTRACT

DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydlo, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.


Subject(s)
Cell Nucleus/metabolism , DNA Breaks, Single-Stranded , DNA Replication , Promyelocytic Leukemia Protein/metabolism , X-ray Repair Cross Complementing Protein 1/metabolism , Antigens, Nuclear/metabolism , Autoantigens/metabolism , Cells, Cultured , DNA Repair , HeLa Cells , Humans , Origin Recognition Complex/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL