Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35324780

ABSTRACT

Lentiviral vectors are unique and highly efficient genetic tools to incorporate genetic materials into the genome of a variety of cells whilst conserving biosafety. Their rapid acceptance made it necessary to improve existing protocols, including molecular engineering and cloning, production of purified lentiviral particles, and efficient infection of target cells. In addition to traditional protocols, which can be time-consuming, several biotechnology companies are providing scientists with commercially available lentiviral constructs and particles. However, these constructs are limited by their original form, tend to be costly, and lack the flexibility to re-engineer based on the ever-changing needs of scientific projects. Therefore, the current study organizes the existing methods and integrates them with novel ideas to establish a protocol that is simple and efficient to implement. In this study we, (i) generated an innovative site-directed nucleotide attachment/replacement and DNA insertion method using unique PCR primers, (ii) improved traditional methods by integrating plasmid clarification steps, (iii) utilized endogenous mRNA as a resource to construct new lentiviruses, and (iv) identified an existing purification method and incorporated it into an organized workflow to produce high-yield lentiviral particle collection. Finally, (v) we verified and demonstrated the functional validity of our methods using an infection strategy.

2.
Cells ; 9(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973233

ABSTRACT

Glioblastoma (GBM) is a treatment-refractory central nervous system (CNS) tumour, and better therapies to treat this aggressive disease are urgently needed. Primary GBM models that represent the true disease state are essential to better understand disease biology and for accurate preclinical therapy assessment. We have previously presented a comprehensive transcriptome characterisation of a panel (n = 12) of primary GBM models (Q-Cell). We have now generated a systematic, quantitative, and deep proteome abundance atlas of the Q-Cell models grown in 3D culture, representing 6167 human proteins. A recent study has highlighted the degree of functional heterogeneity that coexists within individual GBM tumours, describing four cellular states (MES-like, NPC-like, OPC-like and AC-like). We performed comparative proteomic analysis, confirming a good representation of each of the four cell-states across the 13 models examined. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified upregulation of a number of GBM-associated cancer pathway proteins. Bioinformatics analysis, using the OncoKB database, identified a number of functional actionable targets that were either uniquely or ubiquitously expressed across the panel. This study provides an in-depth proteomic analysis of the GBM Q-Cell resource, which should prove a valuable functional dataset for future biological and preclinical investigations.


Subject(s)
Cell Culture Techniques/methods , Glioblastoma/metabolism , Glioblastoma/pathology , Proteomics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Ontology , Glioblastoma/genetics , Humans , Neoplasm Proteins/metabolism , Proteome/metabolism
3.
Cancer Discov ; 9(11): 1574-1589, 2019 11.
Article in English | MEDLINE | ID: mdl-31434712

ABSTRACT

Glioblastomas (GBM) are lethal brain tumors where poor outcome is attributed to cellular heterogeneity, therapeutic resistance, and a highly infiltrative nature. These characteristics are preferentially linked to GBM cancer stem cells (GSC), but how GSCs maintain their stemness is incompletely understood and the subject of intense investigation. Here, we identify a novel signaling loop that induces and maintains GSCs consisting of an atypical metalloproteinase, ADAMDEC1, secreted by GSCs. ADAMDEC1 rapidly solubilizes FGF2 to stimulate FGFR1 expressed on GSCs. FGFR1 signaling induces upregulation of ZEB1 via ERK1/2 that regulates ADAMDEC1 expression through miR-203, creating a positive feedback loop. Genetic or pharmacologic targeting of components of this axis attenuates self-renewal and tumor growth. These findings reveal a new signaling axis for GSC maintenance and highlight ADAMDEC1 and FGFR1 as potential therapeutic targets in GBM. SIGNIFICANCE: Cancer stem cells (CSC) drive tumor growth in many cancers including GBM. We identified a novel sheddase, ADAMDEC1, which initiates an FGF autocrine loop to promote stemness in CSCs. This loop can be targeted to reduce GBM growth.This article is highlighted in the In This Issue feature, p. 1469.


Subject(s)
ADAM Proteins/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Feedback, Physiological , Female , Fibroblast Growth Factor 2/metabolism , Glioblastoma/genetics , Humans , MicroRNAs/genetics , Neoplasm Transplantation , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...