Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836282

ABSTRACT

Rhizoctonia solani causes severe diseases in many plant species, particularly root rot in tomato plants. For the first time, Trichoderma pubescens effectively controls R. solani in vitro and in vivo. R. solani strain R11 was identified using the ITS region (OP456527); meanwhile, T. pubescens strain Tp21 was characterized by the ITS region (OP456528) and two genes (tef-1 and rpb2). The antagonistic dual culture method revealed that T. pubescens had a high activity of 76.93% in vitro. A substantial increase in root length, plant height, shoot fresh and dry, and root fresh and dry weight was indicated after applying T. pubescens to tomato plants in vivo. Additionally, it significantly increased the chlorophyll content and total phenolic compounds. The treatment with T. pubescens exhibited a low disease index (DI, 16.00%) without significant differences with Uniform® fungicide at a concentration of 1 ppm (14.67%), while the R. solani-infected plants showed a DI of 78.67%. At 15 days after inoculation, promising increases in the relative expression levels of three defense-related genes (PAL, CHS, and HQT) were observed in all T. pubescens treated plants compared with the non-treated plants. Plants treated with T. pubescens alone showed the highest expression value, with relative transcriptional levels of PAL, CHS, and HQT that were 2.72-, 4.44-, and 3.72-fold higher in comparison with control plants, respectively. The two treatments of T. pubescens exhibited increasing antioxidant enzyme production (POX, SOD, PPO, and CAT), while high MDA and H2O2 levels were observed in the infected plants. The HPLC results of the leaf extract showed a fluctuation in polyphenolic compound content. T. pubescens application alone or for treating plant pathogen infection showed elevated phenolic acids such as chlorogenic and coumaric acids. Therefore, the ability of T. pubescens to inhibit the growth of R. solani, enhance the development of tomato plants, and induce systemic resistance supports the application of T. pubescens as a potential bioagent for managing root rot disease and productivity increase of crops.

2.
Microb Pathog ; 147: 104383, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32659315

ABSTRACT

In this study, the antiviral, antifungal, and insecticidal and HPLC analysis of polyphenolic compounds of Eucaluptus camaldulensis Dehnh. bark extract (ECBE) were evaluated. Three fungi, namely Fusarium culmorum MN398395, Rhizoctonia solani MN398397, and Botrytis cinerea MN398399 were used to colonize wood blocks of chinaberry that was previously treated with different concentrations of ECBE at 1%, 2%, and 3%. Antiviral evaluations (protective, curative, and inactivating activities) of the extract at 100 µg/mL were assayed against Tobacco mosaic virus (TMV) MG264131 using the half-leaf method to determine the inhibitory percentage towards the number of local lesions. The protective treatment of Nicotiana glutinosa leaves exhibited excellent activity (72.22%) with a 91.1-fold reduction in TMV-CP accumulation in infected tissues. Furthermore, Real-time quantitative PCR revealed that the expression level of PAL and PR-1 (salicylic acid marker) genes were significantly up regulated at four days-post inoculation (dpi) for all treatments compared to untreated leaves. The insecticidal effect was screened by the contact and fumigant methods against Tribolium castaneum (Herbst) and Sitophilus oryzae L. in vitro. In contact assay, all concentrations 1, 5, 10, 20 and 30 ppm caused 100% toxicity to the two tested pests within 24 h, whereas the fumigant assay, gave the highest mortality against T. castaneum and S. oryzae by 20 ppm (61.66%) and 30 ppm (57.77%), respectively after 24 h. The HPLC analysis of ECBE revealed that benzoic acid, quinol, salicylic acid, myricetin, and rutin were the most abundant polyphenolic compounds found in the extract. In conclusion, when the extract concentration increases, the growth of fungal mycelia was decreased compared with the control, especially against F. culmorum. According to the hypotheses of the results, the ECBE recommended to prevent the wood from discoloration, fungal molds by acting as bio-preservative, also trigger the resistance of plants against viral infection and high toxicity against stored-product insects.


Subject(s)
Eucalyptus , Insecticides , Animals , Antifungal Agents/pharmacology , Antiviral Agents/pharmacology , Botrytis , Chromatography, High Pressure Liquid , Fusarium , Plant Bark/chemistry , Plant Extracts/pharmacology , Rhizoctonia
SELECTION OF CITATIONS
SEARCH DETAIL
...