Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Viruses ; 16(3)2024 03 10.
Article in English | MEDLINE | ID: mdl-38543792

ABSTRACT

The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.


Subject(s)
Plant Viruses , X-Ray Diffraction , Cryoelectron Microscopy , Scattering, Small Angle , Microscopy, Atomic Force/methods , X-Rays , Crystallography, X-Ray
2.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36851694

ABSTRACT

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Vaccines, Inactivated , COVID-19/prevention & control , COVID-19 Serotherapy , COVID-19 Vaccines , Pandemics , Propiolactone/pharmacology , SARS-CoV-2 , Formaldehyde
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499114

ABSTRACT

S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.


Subject(s)
Acyl Coenzyme A , Acyltransferases , Humans , Acyl Coenzyme A/metabolism , Acylation , Acyltransferases/metabolism , Fatty Acids/metabolism , Substrate Specificity
4.
J Biomol Struct Dyn ; 40(10): 4642-4661, 2022 07.
Article in English | MEDLINE | ID: mdl-33317396

ABSTRACT

Influenza A/H1N1 virus hemagglutinin (HA) is an integral type I glycoprotein that contains a large glycosylated ectodomain, a transmembrane domain, and a cytoplasmic tail (CT) of 10-14 amino acid residues. There are absolutely no data on the secondary or tertiary structure of the HA CT, which is important for virus pathogenesis. Three highly conserved cysteines are post-translationally modified by the attachment of fatty acid residues that pin the CT to the lipid membrane inside the virion. We applied circular dichroism (CD) and fluorescence spectroscopy analysis to examine four synthetic peptides corresponding to 14-15 C-terminal residues of H1 subtype HA (NH2-WMCSNGSLQCRICI-COOH; NH2-FWMCSNGSLQCRICI-COOH), with free or acetaminomethylated cysteines, in the reduced or non-reduced state, at various pH values and temperatures. The CD analysis detected the formation of a ß-structure (30-65% according to the new BeStSel algorithm), in addition to an unstructured random coil, in every peptide in various conditions. It was completely or partially recognized as an antiparallel ß-structure that was also confirmed by the multi-bounce Horizontal Attenuated Total Reflectance Fourier Transformed Infrared (HATR-FTIR) spectroscopy analysis. According to the experimental data, as well as 3 D modeling, we assume that the amino acid sequence corresponding to the HA CT may form a short antiparallel ß-structure under the lipid membrane within a virion.Communicated by Ramaswamy H. Sarma.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Lipids , Peptides/chemistry
5.
Membranes (Basel) ; 11(10)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34677538

ABSTRACT

Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.

6.
Biochemistry (Mosc) ; 86(7): 800-817, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34284707

ABSTRACT

COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as ß-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
7.
Nat Commun ; 12(1): 4590, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321466

ABSTRACT

Covalent attachment of C16:0 to proteins (palmitoylation) regulates protein function. Proteins are also S-acylated by other fatty acids including C18:0. Whether protein acylation with different fatty acids has different functional outcomes is not well studied. We show here that C18:0 (stearate) and C18:1 (oleate) compete with C16:0 to S-acylate Cys3 of GNAI proteins. C18:0 becomes desaturated so that C18:0 and C18:1 both cause S-oleoylation of GNAI. Exposure of cells to C16:0 or C18:0 shifts GNAI acylation towards palmitoylation or oleoylation, respectively. Oleoylation causes GNAI proteins to shift out of cell membrane detergent-resistant fractions where they potentiate EGFR signaling. Consequently, exposure of cells to C18:0 reduces recruitment of Gab1 to EGFR and reduces AKT activation. This provides a molecular mechanism for the anti-tumor effects of C18:0, uncovers a mechanistic link how metabolites affect cell signaling, and provides evidence that the identity of the fatty acid acylating a protein can have functional consequences.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Stearic Acids/metabolism , Acylation , Cell Membrane/metabolism , Cell Proliferation , Fatty Acids/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Lipoylation , MCF-7 Cells , Oleic Acids/metabolism
8.
Biochemistry (Mosc) ; 86(2): 230-240, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33832421

ABSTRACT

Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.


Subject(s)
Capsid Proteins/metabolism , Potyvirus/ultrastructure , Virion/ultrastructure , Capsid Proteins/ultrastructure , Circular Dichroism , Microscopy, Electron, Transmission , Potyvirus/metabolism , Scattering, Small Angle , Virion/metabolism , X-Ray Diffraction
9.
Microsc Microanal ; 26(2): 297-309, 2020 04.
Article in English | MEDLINE | ID: mdl-32036809

ABSTRACT

Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Animals , Cell Line , Chickens , Computational Biology , Dogs , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/ultrastructure , Influenza A virus/genetics , Madin Darby Canine Kidney Cells , Mutation , Phenotype , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virion
10.
Protein Pept Lett ; 26(8): 588-600, 2019.
Article in English | MEDLINE | ID: mdl-31161979

ABSTRACT

Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.


Subject(s)
Viral Envelope Proteins/metabolism , Viruses/metabolism , Acylation , Animals , Computational Biology , Databases, Chemical , Humans , Lipoylation , Protein Conformation , Protein Processing, Post-Translational , Proteome , Virus Internalization
11.
J Biomol Struct Dyn ; 37(3): 671-690, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29388479

ABSTRACT

Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.


Subject(s)
Influenza A virus/chemistry , Viral Matrix Proteins/chemistry , Antiviral Agents/pharmacology , Protein Binding , Protein Multimerization , Virion/metabolism
12.
Viruses ; 7(12): 6458-75, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26670246

ABSTRACT

Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding.


Subject(s)
Conserved Sequence , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Virus Assembly , Virus Release , Virus Replication , Acylation , Animals , Cell Line , DNA Mutational Analysis , Dogs , Humans , Influenza A Virus, H1N1 Subtype/genetics , Isoleucine/genetics , Isoleucine/metabolism
13.
J Biol Chem ; 289(50): 34978-89, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25349209

ABSTRACT

S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [(3)H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern.


Subject(s)
Cell Membrane/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Stearates/metabolism , Acylation , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cell Membrane/virology , Cytoplasm/metabolism , Cytoplasm/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/physiology , Models, Molecular , Molecular Sequence Data , Mutagenesis , Point Mutation , Protein Structure, Tertiary , Substrate Specificity
14.
J Bioinform Comput Biol ; 12(2): 1441008, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24712535

ABSTRACT

Interactions between integral membrane proteins hemagglutinin (HA), neuraminidase (NA), M2 and membrane-associated matrix protein M1 of influenza A virus are thought to be crucial for assembly of functionally competent virions. We hypothesized that the amino acid residues located at the interface of two different proteins are under physical constraints and thus probably co-evolve. To predict co-evolving residue pairs, the EvFold ( http://evfold.org ) program searching the (nontransitive) Direct Information scores was applied for large samplings of amino acid sequences from Influenza Research Database ( http://www.fludb.org/ ). Having focused on the HA, NA, and M2 cytoplasmic tails as well as C-terminal domain of M1 (being the less conserved among the protein domains) we captured six pairs of correlated positions. Among them, there were one, two, and three position pairs for HA-M2, HA-M1, and M2-M1 protein pairs, respectively. As expected, no co-varying positions were found for NA-HA, NA-M1, and NA-M2 pairs obviously due to high conservation of the NA cytoplasmic tail. The sum of frequencies calculated for two major amino acid patterns observed in pairs of correlated positions was up to 0.99 meaning their high to extreme evolutionary sustainability. Based on the predictions a hypothetical model of pair-wise protein interactions within the viral envelope was proposed.


Subject(s)
Evolution, Molecular , Models, Chemical , Models, Genetic , Protein Interaction Mapping/methods , Sequence Analysis, Protein/methods , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Algorithms , Amino Acid Sequence , Binding Sites , Computer Simulation , Molecular Sequence Data , Protein Binding , Structure-Activity Relationship
15.
Protein Eng Des Sel ; 26(9): 547-52, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873663

ABSTRACT

Hemagglutinin (HA), the trimeric spike of influenza virus, catalyzes fusion of viral and cellular membranes. We have synthesized the anchoring peptide including the linker, transmembrane region and cytoplasmic tail (HA-TMR-CT) in a cell-free system. Furthermore, to mimic the palmitoylation of three conserved cysteines within the CT, we chemically alkylated HA-TMR-CT using hexadecyl-methanethiosulfonate. While the nuclear magnetic resonance spectroscopy showed pure and refolded peptides, the formation of multiple oligomers of higher order impeded further structural analysis. Circular dichroism spectroscopy of both alkylated and non-alkylated HA-TMR-CT revealed an α-helical secondary structure. No major impact of the fatty acids on the secondary structure was detected.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H7N1 Subtype/chemistry , Peptides/chemistry , Alkylation , Amino Acid Sequence , Escherichia coli/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Influenza A Virus, H7N1 Subtype/genetics , Lipoylation , Mesylates/chemistry , Molecular Mimicry , Molecular Sequence Data , Peptides/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Biochem Soc Trans ; 41(1): 50-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23356257

ABSTRACT

Influenza viruses contain two palmitoylated (S-acylated) proteins: the major spike protein HA (haemagglutinin) and the proton-channel M2. The present review describes the fundamental biochemistry of palmitoylation of HA: the location of palmitoylation sites and the fatty acid species bound to HA. Finally, the functional consequences of palmitoylation of HA and M2 are discussed regarding association with membrane rafts, entry of viruses into target cells by HA-mediated membrane fusion as well as the release of newly assembled virus particles from infected cells.


Subject(s)
Influenza A virus/metabolism , Influenza B virus/metabolism , Lipoylation , Palmitic Acid/metabolism , Viral Proteins/metabolism , Acylation , Amino Acid Sequence , Biocatalysis , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Molecular Sequence Data , Signal Transduction , Viral Proteins/chemistry
17.
Arch Virol ; 158(2): 467-72, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065113

ABSTRACT

Hemagglutinin (HA) of influenza virus is S-acylated with stearate at a transmembrane cysteine and with palmitate at two cytoplasmic cysteines. The amount of stearate varies from 35 (in avian strains) to 12% (in human strains), although the acylation region exhibits only minor or even no amino acid differences between HAs. To address whether matrix proteins and neuraminidase affect stearoylation of HA, we used mass spectrometry to analyze laboratory reassortants containing avian virus HA and the internal proteins from a human virus. Only minor fluctuations in the amount of stearate were observed, implying that other viral proteins do not affect acylation of HA.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Orthomyxoviridae/chemistry , Palmitates/analysis , Protein Processing, Post-Translational , Reassortant Viruses/chemistry , Stearates/analysis , Acylation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Mass Spectrometry
18.
Virus Res ; 160(1-2): 294-304, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21763731

ABSTRACT

Interactions between model enzymes and the influenza virus hemagglutinin (HA) homotrimeric spike were addressed. We digested influenza virions (naturally occurring strains and laboratory reassortants) with bromelain or subtilisin Carlsberg and analyzed by MALDI-TOF mass spectrometry the resulting HA2 C-terminal segments. All cleavage sites, together with (minor) sites detected in undigested HAs, were situated in the linker region that connects the transmembrane domain to the ectodomain. In addition to cleavage at highly favorable amino acids, various alternative enzyme preferences were found that strongly depended on the HA subtype/type. We also evaluated the surface electrostatic potentials, binding cleft topographies and spatial dimensions of stem bromelain (homologically modeled) and subtilisin Carlsberg (X-ray resolved). The results show that the enzymes (∼45Å(3)) would hardly fit into the small (∼18-20Å) linker region of the HA-spike. However, the HA membrane proximal ectodomain region was predicted to be intrinsically disordered. We propose that its motions allow steric adjustment of the enzymes' active sites to the neck of the HA spike. The subtype/type-specific architectures in this region also influenced significantly the cleavage preferences of the enzymes.


Subject(s)
Bromelains/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Protein Interaction Mapping , Subtilisins/metabolism , Bromelains/chemistry , Bromelains/genetics , Computational Biology , Crystallography, X-Ray , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hydrolysis , Models, Biological , Models, Molecular , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Subtilisins/chemistry , Subtilisins/genetics
19.
Biochim Biophys Acta ; 1808(7): 1843-54, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21420932

ABSTRACT

Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.


Subject(s)
Biopolymers/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A virus/chemistry , Influenza B virus/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Influenza A virus/growth & development , Influenza B virus/growth & development , Molecular Sequence Data , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Virology ; 398(1): 49-56, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20006369

ABSTRACT

Many glycoproteins of enveloped viruses are known to be "palmitoylated" at cysteines located either in the transmembrane region or in the cytoplasmic tail. Although it was recognized early on that "palmitoylation" is not specific for this carbon chain, the exact fatty acid composition of S-acylated proteins has been difficult to determine. Advancements in mass-spectrometry (MS) now allow one to quantify the fatty acids linked to single acylation sites. We report that G of Vesicular Stomatitis virus contains palmitate at a cytoplasmic cysteine, whereas F of Newcastle Disease virus and E1 of Semliki Forest virus (SFV) are stoichiometrically acylated with stearate at a transmembrane cysteine. E2 of SFV contains three molecules of palmitate and one molecule of stearate, the latter probably attached to a transmembrane cysteine. Thus, site-specific attachment of palmitate or stearate, previously described only for HA of influenza virus, is a common feature of viral spike proteins.


Subject(s)
Newcastle disease virus/physiology , Palmitates/chemistry , Semliki forest virus/physiology , Stearates/chemistry , Vesiculovirus/physiology , Viral Envelope Proteins/metabolism , Cell Membrane , Cysteine , Cytoplasm , Palmitates/metabolism , Stearates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...