Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chim Acta ; 1310: 342719, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811136

ABSTRACT

BACKGROUND: Separation, classification, and focusing of microparticles are essential issues in microfluidic devices that can be implemented in two categories: using labeling and label-free methods. Label-free methods differentiate microparticles based on their inherent properties, including size, density, shape, electrical conductivity/permittivity, and magnetic susceptibility. Dielectrophoresis is an advantageous label-free technique for this objective. Besides, centrifugal microfluidic devices exploit centrifugal forces to move liquid and particles. The simultaneous combination of dielectrophoretic and centrifugal forces exerted on microparticles still needs to be scrutinized more to predict their trajectories in such devices. RESULTS: An integrated system utilizing two categories in microfluidics is proposed: dielectrophoretic manipulation of microparticles and centrifugal-driven microfluidics, followed by a numerical analysis. In this regard, we assumed a rectangular microchannel with internal unilateral planar electrodes equipped with three equal-sized outlets placed radially on a centrifugal platform where microparticles flow toward the disc's outer edge. The effect of different coordinate-based parameters, including radial and lateral distances (X and Y offsets)/tilting angles toward the radius direction (α), on the particles' movement was investigated. Additionally, the effect of operational parameters, including applied voltage, the microchannel width, the number of enabled electrodes, the diameter of particles, and the configuration of electrodes, were analyzed, and the distributions of particles toward the outlets were monitored. It was found that enhanced particle focusing becomes possible at lower rotation speeds and higher electric field values. Furthermore, the proposed centrifugal-DEP system's efficiency for classifying red blood cells/platelets and Live/Dead yeast cells systems was evaluated. SIGNIFICANCE: Our integrated system is introduced as a novel method for focusing and classifying various microparticles with no need for sheath flows, having the ability to conduct particles at desired routes and focusing width. Furthermore, the system effectively separates various bioparticles and offers ease of operation and high-efficiency throughput over conventional dielectrophoretic devices.

2.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37421028

ABSTRACT

Proper mixing in microfluidic devices has been a concern since the early development stages. Acoustic micromixers (active micromixers) attract significant attention due to their high efficiency and ease of implementation. Finding the optimal geometries, structures, and characteristics of acoustic micromixers is still a challenging issue. In this study, we considered leaf-shaped obstacle(s) having a multi-lobed structure as the oscillatory part(s) of acoustic micromixers in a Y-junction microchannel. Four different types of leaf-shaped oscillatory obstacles, including 1, 2, 3, and 4-lobed structures, were defined, and their mixing performance for two fluid streams was evaluated numerically. The geometrical parameters of the leaf-shaped obstacle(s), including the number of lobes, lobes' length, lobes' inside angle, and lobes' pitch angle, were analyzed, and their optimum operational values were discovered. Additionally, the effects of the placement of oscillatory obstacles in three configurations, i.e., at the junction center, on the side walls, and both, on the mixing performance were evaluated. It was found that by increasing the number and length of lobes, the mixing efficiency improved. Furthermore, the effect of the operational parameters, such as inlet velocity, frequency, and intensity of acoustic waves, was examined on mixing efficiency. Meanwhile, the occurrence of a bimolecular reaction in the microchannel was analyzed at different reaction rates. It was proven that the reaction rate has a prominent effect at higher inlet velocities.

3.
Biosens Bioelectron ; 214: 114381, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35820257

ABSTRACT

Many advanced microfluidic Lab-on-disc (LOD) devices require an on-board power supply for powering active components. LODs with an on-board electrical power supply are called electrified-LODs (eLODs) and are the subject of the present review. This survey comprises two main parts. First, we discuss the different means of delivering electrical energy to a spinning disc including slip-ring, wireless power transmission, and on-board power supply. In the second part, we focus on utilizing electrical power on eLODs for three electrokinetic microfluidic processes: electrophoresis, electroosmotic flow, and dielectrophoresis. Electrokinetic phenomena enable propulsion, separation, and manipulation of different fluids and various types of microparticles/cells. We summarize the theoretical and experimental results for all three electrokinetic phenomena enacted on centrifugal platforms. While extensive numerical modeling and experimental research are available for electrokinetics on stationary platforms, there is a noticeable lack of development in this area when executed on rotating platforms. The review concludes by comparing the strengths and weaknesses of different electrokinetic techniques implemented on centrifugal platforms, and additionally, the most promising applications of electrokinetic-assisted eLOD devices are singled out.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Electroosmosis , Electrophoresis , Microfluidic Analytical Techniques/standards , Microfluidic Analytical Techniques/trends
4.
Sci Total Environ ; 812: 151334, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34748826

ABSTRACT

Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.


Subject(s)
Adsorption , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL