Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chem Rev ; 124(9): 5167-5226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683680

ABSTRACT

This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration. Fluorocarbon refrigerants can be categorized into four generations: chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and hydrofluoroolefins. Each generation of refrigerants solved a key problem from the previous generation; however, each new generation has relied on more complex mixtures that are often zeotropic, near azeotropic, or azeotropic. The complexity of the refrigerants used and the fact that many refrigerants form azeotropes when mixed makes handling the refrigerants at end of life extremely difficult. Today, less than 3% of refrigerants that enter the market are recycled. This is due to a lack of technology in the refrigerant reclaim market that would allow for these complex, azeotropic refrigerant mixtures to be separated into their components in order to be effectively reused, recycled, and if needed repurposed. As the market for recovering and reclaiming refrigerants continues to grow, there is a strong need for separation technology. Ionic liquids show promise for separating azeotropic refrigerant mixtures as an entrainer in extractive distillation process. Ionic liquids have been investigated with refrigerants for this application since the early 2000s. This review will provide a comprehensive summary of the physical property measurements, equations of state modeling, molecular simulations, separation techniques, and unique materials unitizing ionic liquids for the development of an ionic-liquid-based separation process for azeotropic refrigerant mixtures.

2.
J Phys Chem B ; 126(41): 8309-8321, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36206447

ABSTRACT

The physical properties of four ionic liquids (ILs), including 1-n-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im][BF4]), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]), 1-n-butyl-3-methylimidazolium thiocyanate ([C4C1im][SCN]), and 1-n-hexyl-3-methylimidazolium chloride ([C6C1im][Cl]), and their mixtures with hydrofluorocarbon (HFC) gases HFC-32 (CH2F2), HFC-125 (CHF2CF3), and HFC-410A, a 50/50 wt % mixture of HFC-32 and HFC-125, were studied using molecular dynamics (MD) simulation. Experiments were conducted to measure the density, self-diffusivity, and shear viscosity of HFC/[C4C1im][BF4] system. Extensive analyses were carried out to understand the effect of IL structure on various properties of the HFC/IL mixtures. Density, diffusivity, and viscosity of the pure ILs were calculated and compared with experimental values. The good agreement between computed and experimental results suggests that the applied force fields are reliable. The calculated center of mass (COM) radial distribution functions (RDFs), partial RDFs, spatial distribution functions (SDFs), and coordination numbers (CNs) provide a sense of how the distribution of HFC changes in the liquid mixtures with IL structure. Detailed analysis reveals that selectivity toward HFC-32 and HFC-125 depends on both cation and anion. The molecular insight provided in the current work will help the design of optimal ILs for the separation of azeotropic HFC mixtures.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Molecular Dynamics Simulation , Thiocyanates , Chlorides , Anions/chemistry , Gases
3.
Chem Commun (Camb) ; 56(40): 5362-5365, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32285899

ABSTRACT

Lewis acid/base catalysts of AlCl3/N-methyl-2-pyrrolidone (O-NMP) and AlCl3/1-methylimidazole (N-Mim) were prepared and found to have higher catalytic activity in the Friedel-Crafts alkylation of benzene than the known super acidic ionic liquid chloroaluminate [HN222][Al2Cl7] ([HN222]+ = triethylammonium). Crystals structures were obtained for AlCl3(N-Mim), [AlCl2(O-NMP)2][AlCl4], and [Al(O-NMP)6][AlCl4]3·(C6H6)3 supporting the assignments of neutral and charged catalytic species.

4.
Dalton Trans ; 47(23): 7795-7803, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29850701

ABSTRACT

Two solids of differing Lewis acidities, triethylammonium tetrachlorozincate ([HN222]2[ZnCl4]) and AlCl3, have been combined across 0.1 to 0.9 mole fractions (with respect to [HN222]2[ZnCl4]), and homogeneous solid double salts or mixed metal [HN222]2x[(1 - x)AlCl3 + xZnCl4] double salt ionic liquids (DSILs) were obtained at x = 0.33, 0.4, and 0.5 with varying Lewis acidities. The characterization of the prepared DSILs (melting point, color, homogeneity, 1H, 13C, and 27Al nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), single crystal X-ray diffraction (SCXRD), and matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry) suggests that [HN222]2[ZnCl4] transfers Cl- from [ZnCl4]2- to the stronger Lewis acid AlCl3, forming intermediate acidic DSILs with [AlCl4]- and [Al2Cl7]- anions and mixed anionic Zn species. Qualitative Lewis acidity measurements using acetonitrile as an IR-active probe showed that the acidity of the DSILs decreased as the amount of [ZnCl4]2- increased. In a Beckman rearrangement reaction of acetophenone oxime, significant catalytic activity was observed for the DSIL at x = 0.33, where the activity of the DSIL was found to be even higher than [HN222][Al2Cl7], AlCl3, [HN222]2[ZnCl4], or ZnCl2 despite its lower Lewis acidity, apparently due to the synergistic effect of AlCl3 and [ZnCl4]2- as Cl- donors for the formation of catalytically active species. The findings illustrate a DSIL-based approach for modifying the catalytic activity of a known complex without changing its inner coordination sphere.

5.
Chem Commun (Camb) ; 53(39): 5449-5452, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28466895

ABSTRACT

A neutral molecular complex, Zn(ZnCl4)2(Cho)2, has been isolated from the well-known choline chloride/ZnCl2 deep eutectic system (DES) and its crystal structure has been determined. The structure demonstrates the possibility of isolating unusual coordination complexes from DES which departs from the well-established observation of such systems being formed from large, ionic metal complexes or oligomers.

6.
Chemistry ; 20(36): 11511-21, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25056112

ABSTRACT

A new series of multiquaternary ammonium structure-directing agents, based on 1,4-diazabicyclo[2.2.2]octane, was prepared. ZSM-5 zeolites with nanosheet morphology (10 nm crystal thickness) were synthesized under hydrothermal conditions using multiquaternary ammonium surfactants as the zeolite structure-generating agents. Both wide-angle and small-angle diffraction patterns were obtained using only a suitable structure-directing agent under a specific zeolite synthesis composition. A mechanism of zeolite formation is proposed based on the results obtained from various physicochemical characterizations. ZSM-5 materials were investigated in catalytic reactions requiring medium to strong acidity, which are important for the synthesis of a wide range of industrially important fine and specialty chemicals. The catalytic activity of ZSM-5 materials was compared with that of the conventional ZSM-5 and amorphous mesoporous aluminosilicate Al-MCM-41. The synthesis strategy of the present investigation using the new series of structure-directing agents could be extended for the synthesis of other related zeolites or other porous materials in the future. Zeolite with a structural feature as small as the size of a unit cell (5-10 nm) with hierarchically ordered porous structure would be very promising for catalysis.

7.
Chemistry ; 17(51): 14360-5, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22113998

ABSTRACT

Piperidine- and imidazole-based dicatoinic ionic liquids have been developed for the synthesis of zeolite Beta. Hierarchical Beta has a larger surface area and pore volume than conventional Beta. Beta derived from a dicationic ionic liquid exhibited remarkably higher catalytic activity than the conventional Beta. Experimental evidence and DFT calculations suggest that only a suitable conformation of such dicationic ionic liquids is able to form zeolite Beta (see scheme).

SELECTION OF CITATIONS
SEARCH DETAIL
...