Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Kidney Int ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821448

ABSTRACT

Platelets are anucleated cells that circulate in the bloodstream. Historically, platelets were thought to perform a singular function-stop bleeding via clotting. Although platelets do play a key role in hemostasis and thrombosis, recent studies indicate that platelets also modulate inflammation, and this platelet-induced inflammation contributes to the pathophysiology of various diseases such as atherosclerosis and diabetes mellitus. Thus, in recent years, our understanding of platelet function has broadened. In this review, we revisit the classic role of platelets in hemostasis and thrombosis and describe the newly recognized function of platelets in modulating inflammation. We cover the potential use of purinergic receptor antagonists to prevent platelet-modulated inflammation, particularly in patients with chronic kidney disease, and finally, we define key questions that must be addressed to understand how platelet-modulated inflammation contributes to the pathophysiology of chronic kidney disease.

3.
Kidney Int Rep ; 9(1): 16-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312786

ABSTRACT

Individuals diagnosed with chronic kidney disease (CKD) continue to increase globally. This group of patients experience a disproportionately higher risk of cardiovascular (CV) events compared to the general population. Despite multiple guidelines-based medical management, patients with CKD continue to experience residual cardiorenal risk. Several potential mechanisms explain this excessive CV risk observed in individuals with CKD. Several new drugs have become available that could potentially transform CKD care, given their efficacy in this patient population. Nevertheless, use of these drugs presents certain benefits and challenges that are often underrecognized by prescribing these drugs. In this review, we aim to provide a brief discussion about CKD pathophysiology, limiting our discussion to recent published studies. We also explore benefits and limitations of newer drugs, including angiotensin receptor/neprilysin inhibitors (ARNI), sodium glucose transporter 2 inhibitors (SGLT2i), glucagon-like peptides-1 (GLP-1) agonists and finerenone in patients with CKD. Despite several articles covering this topic, our review provides an algorithm where subgroups of patients with CKD might benefit the most from such drugs based on the selection criteria of the landmark trials. Patients with CKD who have nephrotic range proteinuria beyond 5000 mg/g, or those with poorly controlled blood pressure (systolic ≥160 mm Hg or diastolic ≥100 mm Hg) remain understudied.

4.
Mol Cell Biochem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922111

ABSTRACT

Cardiovascular diseases, including myocardial infarction (MI), constitute the leading cause of morbidity and mortality worldwide. Protein-aggregate deposition is a hallmark of aging and neurodegeneration. Our previous study reported that aggregation is strikingly elevated in hearts of hypertensive and aged mice; however, no prior study has addressed MI effects on aggregation in heart or brain. Here, we present novel data on heart and brain aggregation in mice following experimental MI, induced by left coronary artery (LCA) ligation. Infarcted and peri-infarcted heart tissue, and whole cerebra, were isolated from mice at sacrifice, 7 days following LCA ligation. Sham-MI mice (identical surgery without ligation) served as controls. We purified detergent-insoluble aggregates from these tissues, and quantified key protein constituents by high-resolution mass spectrometry (LC-MS/MS). Infarct heart tissue had 2.5- to 10-fold more aggregates than non-infarct or sham-MI heart tissue (each P = 0.001). Protein constituents from MI cerebral aggregates overlapped substantially with those from human Alzheimer's disease brain. Prior injection of mice with mesenchymal stem cell (MSC) exosomes, shown to limit infarct size after LCA ligation, reduced cardiac aggregation ~ 60%, and attenuated markers of endoplasmic reticulum (ER) stress in heart and brain (GRP78, ATF6, P-PERK) by 50-75%. MI also elevated aggregate constituents enriched in Alzheimer's disease (AD) aggregates, such as proteasomal subunits, heat-shock proteins, complement C3, clusterin/ApoJ, and other apolipoproteins. These data provide novel evidence that aggregation is elevated in mouse hearts and brains after myocardial ischemia, leading to cognitive impairment resembling AD, but can be attenuated by exosomes or drug (CDN1163) interventions that oppose ER stress.

6.
Biochem Biophys Rep ; 34: 101463, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37125076

ABSTRACT

Mesenchymal stem cell (MSC) exosomes have been found to attenuate cardiac systolic and diastolic dysfunction in animal models of ischemia. Exosomes carry a plethora of active and inactive proteins as their cargo, which are readily available to the recipient cell for use in intracellular signaling pathways-depending on the stresses, such as ischemia or hypoxia. Among the exosomal proteins are the often-overlooked cargo of transcriptional regulators. These transcriptional regulators influence the transcriptome and subsequently the proteome of recipient cell. Here, we report the transcriptional factors and regulators differentially modulated and their potential role in modulating cardiac function in MSC exosome treated ischemic mice hearts. Our analysis shows ischemic stress modulating transcriptional regulators and factors such as HSF1 and HIF1A in the infarct and peri-infarct areas of ischemic hearts which is mitigated by MSC exosomes. Similarly, STAT3 and SMAD3 are also modulated by MSC exosomes. Interestingly, NOTCH1 and ß-catenin were detected in the ischemic hearts. The differential expression of these regulators and factors drives changes in various biological process governed in the ischemic cardiac cells. We believe these studies will advance our understanding of cardiac dysfunction occurring in the ischemic hearts and lay the groundwork for further studies on the modulation of cardiac function during ischemia by MSC exosomes.

7.
Immunotherapy ; 14(13): 1055-1065, 2022 09.
Article in English | MEDLINE | ID: mdl-35855633

ABSTRACT

The human immune system protects the body against invasive organisms and kicks into a hyperactive mode in COVID-19 patients, particularly in those who are critically sick. Therapeutic regimens directed at the hyperactive immune system have been found to be effective in the treatment of patients with COVID-19. An evolving potential treatment option is therapy with mesenchymal stem cells (MSCs) due to their regenerative and reparative ability in epithelial cells. Clinical trials have reported the safe usage of MSC therapy. Systemic effects of MSC treatment have included a reduction in pro-inflammatory cytokines and a decrease in the levels of CRP, IL-6, and lactase dehydrogenase, which function as independent biomarkers for COVID-19 mortality and respiratory failure.


Treatment of COVID-19 is becoming increasingly difficult because of new variants, such as Delta, and more recently Omicron. Each virus variant becomes smarter at being able to evade the body's immune system, vaccines and drug treatments. The biggest challenge in treating COVID-19 is when the body's immune system starts to become hyperactive. In such a scenario, the immune system releases the compounds that are supposed to be released in small doses all at once. Thus, overwhelming the body and causing many complications. One possible solution to this is the mesenchymal stem cell. Multiple clinical trials have shown that mesenchymal stem cells can heal all different cell types in the body and stop the hyperactive immune system.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Humans , Immunity , Mesenchymal Stem Cell Transplantation/adverse effects , SARS-CoV-2
9.
Future Med Chem ; 14(10): 731-743, 2022 05.
Article in English | MEDLINE | ID: mdl-35466695

ABSTRACT

Along with other scavenger receptors, splice variants of LOX-1 play an important role in modulating numerous subcellular mechanisms such as normal cell development, differentiation and growth in response to physiological stimuli. Thus, LOX-1 activity is a key regulator in determining the severity of many genetic, metabolic, cardiovascular, renal, and neurodegenerative diseases and/or cancer. Increased expression of LOX-1 precipitates pathological disorders during the aging process. Therefore, it becomes important to develop novel LOX-1 inhibitors based on its ligand binding polarity and/or affinity and disrupt the uptake of its ligand: oxidized low-density lipoproteins (ox-LDL). In this review, we shed light on the presently studied and developed novel LOX-1 inhibitors that may have potential for treatment of diseases characterized by LOX-1 activation.


Subject(s)
Scavenger Receptors, Class E , Ligands , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
10.
Theranostics ; 12(1): 418, 2022.
Article in English | MEDLINE | ID: mdl-34987654

ABSTRACT

[This corrects the article DOI: 10.7150/thno.45939.].

11.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R639-R654, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34431382

ABSTRACT

After an ischemic event, there is activation of fibroblasts leading to scar formation. It is critical to limit the profibrotic remodeling and activate the reparative remodeling phase to limit cardiac diastolic dysfunction. Mesenchymal stem cell (MSC) exosomes offer significant protection against ischemia-related systolic dysfunction. Here, we studied if MSC exosomes would offer protection against profibrotic events in mouse hearts subjected to acute ischemia [1 h left coronary artery (LCA) occlusion] or chronic ischemia (7 days LCA occlusion). After acute ischemia, there was activation of inflammatory signals, more in the peri-infarct than in the infarct area, in the saline (vehicle)-treated mice. At the same time, there was expression of cardiac remodeling signals (vimentin, collagens-1 and -3, and fibronectin), more in the infarct area. Treatment with MSC exosomes before LCA ligation suppressed inflammatory signals during acute and chronic ischemia. Furthermore, exosome treatment promoted pro-reparative cardiac extracellular matrix (ECM) remodeling in both infarct and peri-infarct areas by suppressing fibronectin secretion and by modulating collagen secretion to reduce fibrotic scar formation through altered cellular signaling pathways. Proteomics study revealed intense expression of IL-1ß and activation of profibrotic signals in the saline-treated hearts and their suppression in MSC exosome-treated hearts. To our knowledge, this is the first report on the infarct and peri-infarct area proteomics of ischemic mice hearts to explain MSC exosome-mediated suppression of scar formation in the ischemic mouse hearts.


Subject(s)
Exosomes/transplantation , Fibroblasts/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Ischemia/surgery , Myocardium/metabolism , Proteome , Proteomics , Ventricular Remodeling , Animals , Blotting, Western , Cell Line , Cell Movement , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Exosomes/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Male , Mass Spectrometry , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardium/pathology
12.
Mol Cell Biochem ; 476(4): 1691-1704, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33423165

ABSTRACT

Mesenchymal stem cell (MSC) exosomes may limit cardiac injury, and even reverse cardiac damage in animal models of ischemia. To understand exosome-mediated improvement in cardiac function we examined the proteomic alternations in the MSC exosome-treated mice hearts subjected to left coronary artery (LCA) ligation, with particular emphasis on peri-infarct areas. At 7 days after LCA ligation, left ventricular end systolic thickness, infarct size and survival of mice were studied. Mass spectrometric analysis of infarct and peri-infarct areas was carried out. Expression of inflammatory markers (LOX-1 and NLRP3) and cell death markers (Bax, Bcl-2, Caspases 1 and 3 and GSDMD) were investigated by Western blots and immunofluorescence. Proteomic analysis of the infarct and peri-infarct areas in saline-treated hearts revealed differentially expressed proteins involved in inflammation and apoptotic cell death, while showing depletion of processes governing cell death. Exosome treatment significantly improved the proteomic profile in both infarct and peri-infarct areas, more so in the peri-infarct areas. The infarct size was smaller (9 ± 1%), and cardiac contractile function (fractional shortening) was preserved in the exosome-treated mice (28 ± 2%). Survival of exosome-treated mice was also better. White blood cell accumulation in and around the infarct area, expression of LOX-1 and NLRP3 inflammasome, and markers of cell death (cleaved Caspase-3, Caspase-1, GSDMD, Bcl-2 and Bax) were dramatically reduced by MSC exosome treatment (all p < 0.01). In cultured primary mouse cardiomyocytes, treatment with MSC exosomes essentially reversed inflammation-induced pro-apoptotic and inflammatory signals (p < 0.01). MSC exosomes exert their cardioprotective effects by suppressing inflammation and pro-apoptotic processes, particularly in the peri-infarct areas, resulting in preservation of cardiac function after LCA ligation.


Subject(s)
Exosomes , Mesenchymal Stem Cells/metabolism , Myocardial Infarction , Animals , Cell Line, Transformed , Exosomes/metabolism , Exosomes/pathology , Exosomes/transplantation , Humans , Male , Mesenchymal Stem Cells/pathology , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control
13.
Theranostics ; 10(16): 7100-7110, 2020.
Article in English | MEDLINE | ID: mdl-32641981

ABSTRACT

Background: Both PCSK9 and NLRP3 inflammasome play important roles in atherogenesis. This study was designed to test the hypothesis that NLRP3 inflammasome via IL-1ß induces PCSK9 secretion. The inter-twined relationship between NLRP3 inflammasome, IL-1ß and PCSK9 may be relevant in atherogenesis. Methods: We studied NLRP3 inflammasome-mediated PCSK9 secretion in mouse peritoneal macrophages and in a variety of tissues, such as liver, kidney and small intestine. Macrophages were derived from wild-type (WT) and a variety of gene deletion mice to define the mechanistic basis of NLRP3 inflammasome -mediated PCSK9 secretion. Additional studies were performed in high-fat diet fed mice. Results: We observed that NLRP3 and its downstream signals ASC, Caspase-1, IL-18, and IL-1ß all participate in PCSK9 secretion. IL-1ß seems to be more important than IL-18 in the induction of PCSK9 secretion. Further, there appears to be significant involvement of MAPKs in this process. Lastly, we observed that mice fed high fat diet have high expression of NLRP3 and a greater secretion of PCSK9 than mice fed a standard diet, and this increased secretion of PCSK9 in high fat diet-fed mice was attenuated in IL-1ß-/- mice. Conclusions: This study based on extensive in vitro and in vivo data provides evidence that NLRP3 inflammasome via IL-1ß plays an important role in determining PCSK9 secretion, particularly in the presence of high-fat diet.


Subject(s)
Atherosclerosis/immunology , Inflammasomes/immunology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proprotein Convertase 9/metabolism , Animals , Atherosclerosis/blood , Cells, Cultured , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , MAP Kinase Signaling System/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Knockout , Primary Cell Culture , Reactive Oxygen Species/metabolism
14.
PLoS One ; 15(7): e0234614, 2020.
Article in English | MEDLINE | ID: mdl-32649728

ABSTRACT

Exosomes appear to be effective inter-cellular communicators delivering several types of molecules, such as proteins and RNAs, suggesting that they could influence neural stem cell (NSC) differentiation. Our RNA sequencing studies demonstrated that the RNAs related to cell proliferation and astrocyte differentiation were upregulated in human mesenchymal stem cells (hMSC) when co-cultured with exosomes obtained from the culture medium of human glioma cells (U87). Metallothionein 3 and elastin genes, which are related to cell proliferation, increased 10 and 7.2 fold, respectively. Expression of genes for astrocyte differentiation, such as tumor growth factor alpha, induced protein 3 of the NOTCH1 family, colony stimulating factor and interleukin 6 of the STAT3 family and Hes family bHLH transcription factor 1 also increased by 2.3, 10, 4.7 and 2.9 fold, respectively. We further examined the effects of these exosomes on rat fetal neural stem cell (rNSC) differentiation using the secreted exosomes from U87 glioma cells or exosomes from U87 cells that were stimulated with interleukin 1ß (IL-1ß). The rNSCs, extracted from rat brains at embryonic day 14 (E14), underwent a culture protocol that normally leads to predominant (~90%) differentiation to ODCs. However, in the presence of the exosomes from untreated or IL-1ß-treated U87 cells, significantly more cells differentiated into astrocytes, especially in the presence of exosomes obtained from the IL-1ß-challenged glioma cells. Moreover, glioma-derived exosomes appeared to inhibit rNSC differentiation into ODCs or astrocytes as indicated by a significantly increased population of unlabeled cells. A portion of the resulting astrocytes co-expressed both CD133 and glial fibrillary acidic protein (GFAP) suggesting that exosomes from U87 cells could promote astrocytic differentiation of NSCs with features expected from a transformed cell. Our data clearly demonstrated that exosomes secreted by human glioma cells provide a strong driving force for rat neural stem cells to differentiate into astrocytes, uncovering potential pathways and therapeutic targets that might control this aggressive tumor type.


Subject(s)
Astrocytes/metabolism , Cell Differentiation/physiology , Exosomes/physiology , Neural Stem Cells/metabolism , Animals , Astrocytes/physiology , Cell Proliferation , Cells, Cultured , Coculture Techniques , Elastin/metabolism , Exosomes/metabolism , Gene Expression Regulation/genetics , Glioma/metabolism , Humans , Interleukin-6/metabolism , Metallothionein 3 , Nerve Tissue Proteins/metabolism , Neural Stem Cells/physiology , Neurons/metabolism , Primary Cell Culture , Rats , STAT3 Transcription Factor/metabolism
16.
Sci Rep ; 9(1): 19276, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848380

ABSTRACT

A host of hormonal-metabolic alterations take place following exposure of cardiomyocytes to hypoxia and other noxious stimuli. Here, we demonstrate that exposure of cultured rat cardiomyocytes to lipopolysaccharide (LPS) resulted in upregulation (~1.5 fold) of oxidized low-density lipoprotein receptor-1 (LOX-1). There was also a marked increase in apoptosis 12 hrs after LPS treatment with caspase-3 levels being significantly elevated (~1.3 fold) and a significant increase in LDH release at 24 hrs. Interestingly, there was a ~1.4-fold upregulation of LC-3 expression post-LPS treatment indicating development of autophagy, which probably is a compensatory response to combat cellular injury induced by LPS. Treatment with LPS also reduced the size and morphology of cardiomyocyte spheroids. In an attempt to limit LPS-induced injury, cardiomyocytes were treated with exosomes derived from mesenchymal stromal cells (MSCs). We noted a significant suppression of LOX-1 expression that in turn suppressed apoptosis as well as autophagic response and restored spheroid morphology. Mass spectrophotometric analysis of MSC exosomes revealed a cargo rich in proteins which are involved in pathways negatively modulating cell death and apoptosis while promoting cell survival. This is first report to our knowledge on the initial molecular events in MSC exosome mediated cytoprotection of stressed cardiomyocytes.


Subject(s)
Exosomes/genetics , Lipopolysaccharides/pharmacology , Myocytes, Cardiac/drug effects , Scavenger Receptors, Class E/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Cell Survival/drug effects , Cytoprotection/drug effects , Exosomes/drug effects , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Mass Spectrometry , Mesenchymal Stem Cells/drug effects , Rats , Spheroids, Cellular/drug effects
17.
Int J Radiat Biol ; 95(4): 436-442, 2019 04.
Article in English | MEDLINE | ID: mdl-30557074

ABSTRACT

PURPOSE: The purpose of this study was to translate our in vitro therapy approach to an in vivo model. Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Studying lymph-node aspirates containing malignant lung tumor cells showed a strong correlation between glutamine consumption and glutathione (GSH) excretion. Subsequent experiments with A549 and H460 lung tumor cell lines provided additional evidence for glutamine's role in driving synthesis and excretion of GSH. Using stable-isotope-labeled glutamine as a tracer metabolite, we demonstrated that the glutamate group in GSH is directly derived from glutamine, linking glutamine utilization intimately to GSH syntheses. MATERIALS AND METHODS: To understand the possible mechanistic link between glutamine consumption and GSH excretion, we studied GSH metabolism in more detail. Inhibition of glutaminase (GLS) with BPTES, a GLS-specific inhibitor, effectively abolished GSH synthesis and excretion. Since our previous work, several novel GLS inhibitors became available and we report herein effects of CB-839 in A427, H460 and A549 lung tumor cells and human lungtumor xenografts in mice. RESULTS: Inhibition of GLS markedly reduced cell viability, producing ED50 values for inhibition of colony formation of 9, 27 and 217 nM in A427, A549 and H460, respectively. Inhibition of GLS is accompanied by ∼30% increased response to radiation, suggesting an important role of glutamine-derived GSH in protecting tumor cells against radiation-induced injury. In subsequent mouse xenografts, short-term CB-839 treatments reduced serum GSH by >50% and increased response to radiotherapy of H460-derived tumor xenografts by 30%. CONCLUSION: The results support the proposed mechanistic link between GLS activity and GSH synthesis and suggest that GLS inhibitors are effective radiosensitizers.


Subject(s)
Benzeneacetamides/pharmacology , Glutaminase/antagonists & inhibitors , Lung Neoplasms/radiotherapy , Radiation Tolerance/drug effects , Thiadiazoles/pharmacology , Animals , Cell Line, Tumor , Female , Glutamine/metabolism , Glutathione/metabolism , Humans , Male , Mice , Xenograft Model Antitumor Assays
18.
Exp Cell Res ; 372(1): 16-24, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30205087

ABSTRACT

Hepatocellular carcinoma (HCC) is a densely vascularized tumor that is highly dependent on angiogenic pathways to direct arterial blood flow to the growing neoplasm, though little is known about how the interaction of tumor and endothelial cells drives these processes and the degree of clinical importance. To this end, we examined the intercellular cross-talk between HepG2 (human HCC) and human endothelial progenitor cells (EPC) in a co-culture system that mimics some aspects of initial tumor parenchyma and stroma interactions. The results showed that the remote cell-to-cell (paracrine) interactions between HepG2 cells and EPC play a critical role in the differentiation and angiogenic activity of endothelial cells, possibly through intercellular signaling function of the exosomes released in the medium by HepG2 cells. The tumor-cell activated phenotype of EPC was associated with increased migration and elevated expression of ephrin-B2, and Delta-like 4 ligand (DLL4). Furthermore, ephrin-B2 was found to be overexpressed in HCC and cholangiocarcinoma tissue samples taken from humans. Overall, our results demonstrate that ephrin-B2 and Dll4 mediated co-dependence of HCC and EPC intercellular crosstalk in the initial stages of HCC establishment and development, a promising target for new clinical strategies.


Subject(s)
Endothelial Progenitor Cells/metabolism , Ephrin-B2/metabolism , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/metabolism , Models, Biological , Paracrine Communication/genetics , Adaptor Proteins, Signal Transducing , Calcium-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Death , Cell Movement , Coculture Techniques , Collagen/chemistry , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Culture Media, Serum-Free/chemistry , Diffusion Chambers, Culture , Drug Combinations , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/drug effects , Ephrin-B2/genetics , Exosomes/chemistry , Hep G2 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Laminin/chemistry , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Proteoglycans/chemistry , Signal Transduction , Tumor Microenvironment
19.
Biochem Biophys Rep ; 14: 104-113, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29872742

ABSTRACT

Hypoxia, a hallmark characteristic of glioblastoma (GBM) induces changes in the transcriptome and the proteome of tumor cells. We discovered that hypoxic stress produces significant qualitative and quantitative changes in the protein content of secreted exosomes from GBM cells. Among the proteins found to be selectively elevated in hypoxic exosomes were protein-lysine 6-oxidase (LOX), thrombospondin-1 (TSP1), vascular derived endothelial factor (VEGF) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), well studied contributors to tumor progression, metastasis and angiogenesis. Our findings demonstrate that hypoxic exosomes induce differential gene expression in recipient glioma cells. Glioma cells stimulated with hypoxic exosomes showed a marked upregulation of small nucleolar RNA, C/D box 116-21 (SNORD116-21) transcript among others while significantly downregulated the potassium voltage-gated channel subfamily J member 3 (KCNJ3) message. This differential expression of certain genes is governed by the protein cargo being transferred via exosomes. Additionally, compared to normoxic exosomes, hypoxic exosomes increased various angiogenic related parameters vis-à-vis, overall tube length, branching intervals and length of isolated branches studied in tube formation assay with endothelial progenitor cells (EPCs). Thus, the intercellular communication facilitated via exosomes secreted from hypoxic GBM cells induce marked changes in the expression of genes in neighboring normoxic tumor cells and possibly in surrounding stromal cells, many of which are involved in cancer progression and treatment resistance mechanisms.

20.
Carcinogenesis ; 39(9): 1117-1126, 2018 09 21.
Article in English | MEDLINE | ID: mdl-29939201

ABSTRACT

Methionine dependency describes the characteristic rapid in vitro death of most tumor cells in the absence of methionine. Combining chemotherapy with dietary methionine deprivation [methionine-deficient diet (MDD)] at tolerable levels has vast potential in tumor treatment; however, it is limited by MDD-induced toxicity during extended deprivation. Recent advances in imaging and irradiation delivery have created the field of stereotactic body radiotherapy (SBRT), where fewer large-dose fractions delivered in less time result in increased local-tumor control, which could be maximally synergistic with an MDD short course. Identification of the lowest effective methionine dietary intake not associated with toxicity will further enhance the cancer therapy potential. In this study, we investigated the effects of MDD and methionine-restricted diet (MRD) in primary and metastatic melanoma models in combination with radiotherapy (RT). In vitro, MDD dose-dependently sensitized mouse and human melanoma cell lines to RT. In vivo in mice, MDD substantially potentiated the effects of RT by a significant delay in tumor growth, in comparison with administering MDD or RT alone. The antitumor effects of an MDD/RT approach were due to effects on one-carbon metabolism, resulting in impaired methionine biotransformation via downregulation of Mat2a, which encodes methionine adenosyltransferase 2A. Furthermore, and probably most importantly, MDD and MRD substantially diminished metastatic potential; the antitumor MRD effects were not associated with toxicity to normal tissue. Our findings suggest that modulation of methionine intake holds substantial promise for use with short-course SBRT for cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/diet therapy , Melanoma/pathology , Methionine Adenosyltransferase/biosynthesis , Methionine/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Humans , Male , Methionine/administration & dosage , Methionine/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...