Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38947032

ABSTRACT

Hypermobile Ehlers-Danlos syndrome (hEDS) is a common heritable connective tissue disorder that lacks a known genetic etiology. To identify genetic contributions to hEDS, whole exome sequencing was performed on families and a cohort of sporadic hEDS patients. A missense variant in Kallikrein-15 (KLK15 p. Gly226Asp), segregated with disease in two families and genetic burden analyses of 197 sporadic hEDS patients revealed enrichment of variants within the Kallikrein gene family. To validate pathogenicity, the variant identified in familial studies was used to generate knock-in mice. Consistent with our clinical cohort, Klk15 G224D/+ mice displayed structural and functional connective tissue defects within multiple organ systems. These findings support Kallikrein gene variants in the pathogenesis of hEDS and represent an important step towards earlier diagnosis and better clinical outcomes.

2.
J Ultrasound Med ; 42(1): 59-70, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35396717

ABSTRACT

OBJECTIVES: Abnormal fetal tongue size is a phenotypic feature of various syndromes including Beckwith-Wiedemann, Pierre-Robin, oromandibular limb hypoplasia, chromosomal aberrations, etc. Current data regarding normal fetal tongue size are limited. Hence, micro/macroglossia are subjectively determined. The aim of the study was to construct a contemporary fetal tongue nomogram and to assess its clinical contribution. METHODS: A prospective cross-sectional study was performed in well dated, low risk, singleton pregnancies. Fetal tongues were measured by 5 trained sonographers. Highest quality images were selected. Intra- and interobserver variability was assessed. Tongue length, width, area, and circumference 1st to 99th centiles were calculated for each gestational week. Based on the normal tongue size charts, we created a Tongue Centile Calculator. RESULTS: Over 18 months, 664 tongue measurements were performed. A cubic polynomial regression model best described the correlation between tongue size and gestational age. The correlation coefficient (r2 ) was 0.934, 0.932, 0.925, and 0.953 for tongue length, width, area, and circumference, respectively (P < .001). Intra- and interobserver variability had high interclass correlation coefficients (>0.9). Using the new charts, we were able to identify 2 cases of macroglossia, subsequently diagnosed with Beckwith-Wiedemann, and 4 cases of microglossia, 3 associated with Pierre-Robin sequence, and 1 associated with persistent buccopharyngeal membrane. CONCLUSIONS: We present novel fetal tongue size charts from 13 to 40 weeks of gestation. Clinical application of these nomograms may be beneficial in the prenatal diagnosis of syndromes or malformations associated with abnormal fetal tongue size.


Subject(s)
Beckwith-Wiedemann Syndrome , Macroglossia , Pregnancy , Female , Humans , Macroglossia/complications , Beckwith-Wiedemann Syndrome/complications , Cross-Sectional Studies , Prospective Studies , Tongue/abnormalities
3.
JACC CardioOncol ; 4(4): 535-548, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36444237

ABSTRACT

Background: Trametinib is a MEK1 (mitogen-activated extracellular signal-related kinase kinase 1) inhibitor used in the treatment of BRAF (rapid accelerated fibrosarcoma B-type)-mutated metastatic melanoma. Roughly 11% of patients develop cardiomyopathy following long-term trametinib exposure. Although described clinically, the molecular landscape of trametinib cardiotoxicity has not been characterized. Objectives: The aim of this study was to test the hypothesis that trametinib promotes widespread transcriptomic and cellular changes consistent with oxidative stress and impairs cardiac function. Methods: Mice were treated with trametinib (1 mg/kg/d). Echocardiography was performed pre- and post-treatment. Gross, histopathologic, and biochemical assessments were performed to probe for molecular and cellular changes. Human cardiac organoids were used as an in vitro measurement of cardiotoxicity and recovery. Results: Long-term administration of trametinib was associated with significant reductions in survival and left ventricular ejection fraction. Histologic analyses of the heart revealed myocardial vacuolization and calcification in 28% of animals. Bulk RNA sequencing identified 435 differentially expressed genes and 116 differential signaling pathways following trametinib treatment. Upstream gene analysis predicted interleukin-6 as a regulator of 17 relevant differentially expressed genes, suggestive of PI3K/AKT and JAK/STAT activation, which was subsequently validated. Trametinib hearts displayed elevated markers of oxidative stress, myofibrillar degeneration, an 11-fold down-regulation of the apelin receptor, and connexin-43 mislocalization. To confirm the direct cardiotoxic effects of trametinib, human cardiac organoids were treated for 6 days, followed by a 6-day media-only recovery. Trametinib-treated organoids exhibited reductions in diameter and contractility, followed by partial recovery with removal of treatment. Conclusions: These data describe pathologic changes observed in trametinib cardiotoxicity, supporting the exploration of drug holidays and alternative pharmacologic strategies for disease prevention.

4.
Molecules ; 27(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744803

ABSTRACT

Cancer is the second most common cause of death in the United States, accounting for 602,350 deaths in 2020. Cancer-related death rates have declined by 27% over the past two decades, partially due to the identification of novel anti-cancer drugs. Despite improvements in cancer treatment, newly approved oncology drugs are associated with increased toxicity risk. These toxicities may be mitigated by pharmacokinetic optimization and reductions in off-target interactions. As such, there is a need for early-stage implementation of pharmacokinetic (PK) prediction tools. Several PK prediction platforms exist, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble Approach (SEA), and SwissADME. These tools can be used in screening hits, allowing for the selection of compounds were reduced toxicity and/or risk of attrition. In this short commentary, we used PK prediction tools in the optimization of mitogen activated extracellular signal-related kinase kinase 1 (MEK1) inhibitors. In doing so, we identified MEK1 inhibitors with retained activity and optimized predictive PK properties, devoid of hERG inhibition. These data support the use of publicly available PK prediction platforms in early-stage drug discovery to design safer drugs.


Subject(s)
Antineoplastic Agents , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
J Cardiovasc Dev Dis ; 8(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805717

ABSTRACT

Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.

6.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Article in English | MEDLINE | ID: mdl-33811421

ABSTRACT

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Heart Valves/embryology , Mitral Valve Prolapse/metabolism , Organogenesis/physiology , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , HEK293 Cells , Heart Valves/metabolism , Humans , Mice , Mice, Knockout , Mitral Valve Prolapse/genetics , Phenotype , Signal Transduction/physiology
7.
Prenat Diagn ; 41(7): 861-867, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33591583

ABSTRACT

OBJECTIVE: To describe the sonographic appearance of the fetal esophagus during early pregnancy and evaluate the feasibility of imaging the entire esophageal length. In addition, we present a case of disrupted esophageal continuity, subsequently diagnosed with esophageal atresia (EA). METHODS: A prospective observational study of 145 patients. During the early second trimester anomaly scan performed at 12-17 weeks' gestation the entire esophagus was captured in a single sonographic image at the midsagittal plane (one shot technique). Postnatal follow-up of esophageal patency included review of medical records and telephone interviews. RESULTS: Complete visualization of the esophagus (neck to diaphragm) was possible in 144 cases. In 88% of cases the esophagus was demonstrated by transvaginal approach. The time required to obtain the desired view of the esophagus, once the fetus was in an optimal position, was on average 13 s (range: 5-30 s). In one case at 15 weeks' gestation, the cervical segment of the esophagus was demonstrated while the lower thoracic segment was not identified. Subsequently EA was diagnosed. CONCLUSIONS: It is feasible to demonstrate the entire esophagus during early second trimester anomaly scan. An early second trimester anomaly scan may serve as a window of opportunity for EA screening.


Subject(s)
Esophagus/diagnostic imaging , Fetus/diagnostic imaging , Ultrasonography, Prenatal/methods , Adult , Female , Gestational Age , Humans , Noninvasive Prenatal Testing/methods , Noninvasive Prenatal Testing/statistics & numerical data , Pregnancy , Prospective Studies , Ultrasonography, Prenatal/standards , Ultrasonography, Prenatal/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...