Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Transpl Int ; 37: 12468, 2024.
Article in English | MEDLINE | ID: mdl-38699175

ABSTRACT

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Subject(s)
Kidney Transplantation , Kidney , Organoids , Humans , Organoids/immunology , Animals , Kidney/immunology , Mice , Coculture Techniques , Leukocytes, Mononuclear/immunology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/immunology , Immune System , B7-H1 Antigen/metabolism , Macrophages/immunology
2.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35524742

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Subject(s)
Induced Pluripotent Stem Cells , Teratoma , Animals , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Kidney/pathology , Mice , Organogenesis , Organoids/metabolism , Teratoma/pathology
3.
Stem Cells Dev ; 30(22): 1103-1114, 2021 11.
Article in English | MEDLINE | ID: mdl-34549597

ABSTRACT

Human-induced pluripotent stem cell (iPSC)-derived kidney organoids have the potential to advance studies to kidney development and disease. However, reproducible generation of kidney organoids is a challenge. A large variability in the percentage of nephron structures and the expression of kidney-specific genes was observed among organoids, showing no association with iPSC lines. To associate the quality of kidney organoid differentiation with predictive markers, a ranking system was developed based on the ratio of nephron structure determined by histological examination. Well-differentiated organoids were defined as organoids with >30% nephron structure and vice versa. Subsequently, correlations were made with expression profiles of iPSC markers, early kidney development markers, and fibrosis markers. Higher expression of sex-determining region Y-box 2 (SOX2) during differentiation was associated with poorly differentiated kidney organoid. Furthermore, early secretion of basic fibroblast growth factor (FGF2) predicted poorly differentiated kidney organoid. Of interest, whereas cadherin-1 (CDH1) expression in kidney organoids indicates distal tubules formation, onefold higher CDH1 expression in iPSC predicted poor differentiation. High expression of the stromal progenitor marker Forkhead Box D1 (FOXD1) and significantly increased TGFß levels were found in well-differentiated kidney organoids. These early expression profiles could predict the outcome of kidney organoid formation. This study helps to improve the robustness of kidney organoid protocols.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Forkhead Transcription Factors/metabolism , Humans , Kidney , Organoids
5.
Front Immunol ; 12: 651109, 2021.
Article in English | MEDLINE | ID: mdl-33790914

ABSTRACT

Mesenchymal stromal cells (MSC) are a promising therapy for inflammatory diseases. However, MSC are large and become trapped in the lungs after intravenous infusion, where they have a short survival time. To steer MSC immunoregulatory therapy beyond the lungs, we generated nm-sized particles from MSC membranes (membrane particles, MP), which have immunomodulatory properties, and investigated their internalization and mode of interaction in macrophages subtypes and human umbilical vein endothelial cells (HUVEC) under control and inflammatory conditions. We found that macrophages and HUVEC take up MP in a dose, time, and temperature-dependent manner. Specific inhibitors for endocytotic pathways revealed that MP internalization depends on heparan sulfate proteoglycan-, dynamin-, and clathrin-mediated endocytosis but does not involve caveolin-mediated endocytosis. MP uptake also involved the actin cytoskeleton and phosphoinositide 3-kinase, which are implicated in macropinocytosis and phagocytosis. Anti-inflammatory M2 macrophages take up more MP than pro-inflammatory M1 macrophages. In contrast, inflammatory conditions did not affect the MP uptake by HUVEC. Moreover, MP induced both anti- and pro-inflammatory responses in macrophages and HUVEC by affecting gene expression and cell surface proteins. Our findings on the mechanisms of uptake of MP under different conditions help the development of target-cell specific MP therapy to modulate immune responses.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Cell-Derived Microparticles/immunology , Mesenchymal Stem Cells/cytology , Cell-Derived Microparticles/transplantation , Cells, Cultured , Dose-Response Relationship, Immunologic , Healthy Volunteers , Human Umbilical Vein Endothelial Cells , Humans , Macrophages/immunology , Mesenchymal Stem Cells/immunology , Phagocytosis/immunology , Pinocytosis/immunology , Primary Cell Culture , Subcutaneous Fat/cytology
6.
Front Immunol ; 12: 650522, 2021.
Article in English | MEDLINE | ID: mdl-33897698

ABSTRACT

Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as cardiovascular diseases, autoimmune diseases, and contributes to alloimmune responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the extracellular vesicles (EV) released by them are widely studied as regenerative therapy for the endothelium. However, for therapeutic application, the manipulation of living MSC and large-scale production of EV are major challenges. Membrane particles (MP) generated from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles artificially generated from the membranes of MSC and possess some of the therapeutic properties of MSC. In the present study we investigated whether MP conserve the beneficial MSC effects on endothelial cell repair processes under inflammatory conditions. MP were generated by hypotonic shock and extrusion of MSC membranes. The average size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells (HUVEC) were tested in a model of inflammation induced by TNFα. Confocal microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture system of monocytes and TNFα activated HUVEC, MP did not affect monocyte adherence to HUVEC, but reduced the transmigration of monocytes across the endothelial layer from 138 ± 61 monocytes per microscopic field in TNFα activated HUVEC to 61 ± 45 monocytes. TNFα stimulation induced a 2-fold increase in the permeability of the HUVEC monolayer measured by the translocation of FITC-dextran to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly decreased endothelial permeability (1.5-fold) respect to TNFα Stimulated HUVEC. Finally, MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by stimulating the formation of angiogenic structures, such as percentage of covered area, total tube length, total branching points, total loops. In conclusion, MP show regenerative effects on endothelial cells, opening a new avenue for treatment of vascular diseases where inflammatory processes damage the endothelium.


Subject(s)
Adipose Tissue/cytology , Extracellular Vesicles/immunology , Human Umbilical Vein Endothelial Cells/immunology , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Cell Adhesion/immunology , Cell Membrane Permeability/immunology , Cells, Cultured , Coculture Techniques , Cryoelectron Microscopy , DNA/genetics , DNA/isolation & purification , Extracellular Vesicles/genetics , Extracellular Vesicles/ultrastructure , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microscopy, Electron, Transmission , Monocytes/cytology , Particle Size , RNA/genetics , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
7.
PLoS One ; 16(3): e0248415, 2021.
Article in English | MEDLINE | ID: mdl-33730089

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. METHODS: Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-ß for 48h and gene expression of major pro-fibrotic markers were analyzed. RESULTS: About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment. CONCLUSIONS: MP conserve some of the properties attributed to the living MSC. This study shows that MP target lung cells, via which they may have a broad anti-fibrotic effect.


Subject(s)
Cell-Derived Microparticles/transplantation , Idiopathic Pulmonary Fibrosis/therapy , Mesenchymal Stem Cells/cytology , Nanoparticles/therapeutic use , Primary Cell Culture/methods , A549 Cells , Adult , Aged , Coculture Techniques , Female , Fibroblasts , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/pathology , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Middle Aged , Subcutaneous Fat/cytology , Telomere Shortening
8.
Kidney Int ; 99(1): 134-147, 2021 01.
Article in English | MEDLINE | ID: mdl-32918942

ABSTRACT

Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell-derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system.


Subject(s)
Induced Pluripotent Stem Cells , Renin , Angiotensin II/metabolism , Angiotensinogen/metabolism , Animals , Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Mice , Organoids/metabolism , Renin/metabolism , Renin-Angiotensin System
9.
Stem Cells ; 38(6): 797-807, 2020 06.
Article in English | MEDLINE | ID: mdl-32101344

ABSTRACT

Mesenchymal stem cells (MSCs) are used in various clinical and preclinical models for immunomodulation. However, it remains unclear how the immunomodulatory effect of MSC is communicated. MSC-induced immunomodulation is known to be mediated through both MSC-secreted cytokines and direct cell-cell interactions. Recently, it has been demonstrated that metabolically inactive, heat-inactivated MSCs (HI-MSCs) have similar anti-inflammatory capacities in LPS-induced sepsis compared with viable MSC. To further investigate the immunomodulatory effects of MSC, we introduced MSC and HI-MSC in two animal models with different immunological causes. In the first model, allogeneic hearts were transplanted from C57BL/6 mice to BALB/c recipients. MSC in combination with mycophenolate mofetil (MMF) significantly improved graft survival compared with MMF alone, whereas the application of HI-MSC had no effect on graft survival. We revealed that control MSC dose-dependently inhibited CD3+ and CD8+ T-cell proliferation in vitro, whereas HI-MSC had no effect. In the second model, sepsis was induced in mice via cecal ligation and puncture. HI-MSC treatment significantly improved the overall survival, whereas control MSCs had no effect. in vitro studies demonstrated that HI-MSCs are more effectively phagocytosed by monocytes than control MSCs and induced cell death in particular of activated CD16+ monocytes, which may explain the immune protective effect of HI-MSC in the sepsis model. The results of our study demonstrate that MSC-mediated immunomodulation in sepsis is dependent on a passive recognition of MSC by monocytes, whereas fully functional MSCs are required for inhibition of T-cell-mediated allograft rejection.


Subject(s)
Heart Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Sepsis/etiology , Transplantation, Homologous/methods , Animals , Disease Models, Animal , Humans , Mice , Sepsis/pathology
10.
Stem Cells Dev ; 29(1): 38-48, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31696786

ABSTRACT

Mesenchymal stromal cells (MSCs) are attractive candidates for immunomodulatory cell therapy. However, it remains unknown how far therapeutic efficacy and potency are dependent on the dosage and activity of the MSCs. We previously observed that infusion of MSCs leads to rapid and transient changes in cytokine expression in blood, lung, and liver. In the present study, increasing doses of syngeneic adipose tissue-derived MSCs were infused in healthy mice and systemic changes in G-CSF, IL6, IL-10, and CXCL5 were detected 2 h after administration of 3 × 105 MSCs per animal, but not at lower doses. In lung and liver tissue, dose-dependent effects of MSCs on cytokine mRNA expression levels were detected from doses as low as 3 × 103 MSCs. Infusion of secretome-deficient or IFNγ-activated MSCs in healthy mice had similar effects on systemic cytokine levels as control MSCs, suggesting that in vivo at least the initial systemic effect of MSC administration is independent of the level of activity of MSCs, but depends on the response of host cells to MSCs. The results of this study reveal a rapid dose-dependent effect of MSCs and stress the important role of host cells in MSC treatment. This knowledge contributes to the design of rational MSC trials and to the quest for clinical efficacy of MSC therapy.


Subject(s)
Adipose Tissue/cytology , Immunomodulation , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Animals , Cell Count , Cells, Cultured , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression , Humans , Interferons/pharmacology , Liver/metabolism , Lung/metabolism , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Time Factors
11.
Cytotherapy ; 20(7): 919-929, 2018 07.
Article in English | MEDLINE | ID: mdl-29934259

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) are studied for their immunotherapeutic potential. Prior to therapeutic use, MSCs are culture expanded to obtain the required cell numbers and, to improve their efficacy, MSCs may be primed in vitro. Culture expansion and priming induce phenotypical and functional changes in MSCs and thus standardisation and quality control measurements come in need. We investigated the impact of priming and culturing on MSC DNA methylation and examined the use of epigenetic profiling as a quality control tool. METHODS: Human umbilical cord-derived MSCs (ucMSCs) were cultured for 3 days with interferon (IFN)γ, transforming growth factor (TGF)ß or a multi-factor combination (MC; IFNγ, TGFß and retinoic acid). In addition, ucMSCs were culture expanded for 14 days. Phenotypical changes and T-cell proliferation inhibition capacity were examined. Genome-wide DNA methylation was measured with Infinium MethylationEPIC Beadchip. RESULTS: Upon priming, ucMSCs exhibited a different immunophenotype and ucMSC(IFNγ) and ucMSC(MC) had an increased capacity to inhibit T-cell proliferation. DNA methylation patterns were minimally affected by priming, with only one significantly differentially methylated site (DMS) in IFNγ- and MC-primed ucMSCs associated with autophagy activity. In contrast, 14 days after culture expansion, ucMSCs displayed minor phenotypical and functional changes but showed >4000 significantly DMSs, mostly concerning genes involved in membrane composition, cell adhesion and transmembrane signalling. DISCUSSION: These data show that DNA methylation of MSCs is only marginally affected by priming, whereas culture expansion and subsequent increased cellular interactions have a large impact on methylation. On account of this study, we suggest that DNA methylation analysis is a useful quality control tool for culture expanded therapeutic MSCs.


Subject(s)
Cell Culture Techniques/methods , Epigenesis, Genetic , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Biomarkers/metabolism , Cell Shape , Cells, Cultured , DNA Methylation/genetics , Humans , Immunophenotyping , Interferon-gamma/metabolism , Mesenchymal Stem Cells/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Stem Cells ; 36(4): 602-615, 2018 04.
Article in English | MEDLINE | ID: mdl-29341339

ABSTRACT

Mesenchymal stem or stromal cells (MSC) are under investigation as a potential immunotherapy. MSC are usually administered via intravenous infusion, after which they are trapped in the lungs and die and disappear within a day. The fate of MSC after their disappearance from the lungs is unknown and it is unclear how MSC realize their immunomodulatory effects in their short lifespan. We examined immunological mechanisms determining the fate of infused MSC and the immunomodulatory response associated with it. Tracking viable and dead human umbilical cord MSC (ucMSC) in mice using Qtracker beads (contained in viable cells) and Hoechst33342 (staining all cells) revealed that viable ucMSC were present in the lungs immediately after infusion. Twenty-four hours later, the majority of ucMSC were dead and found in the lungs and liver where they were contained in monocytic cells of predominantly non-classical Ly6Clow phenotype. Monocytes containing ucMSC were also detected systemically. In vitro experiments confirmed that human CD14++ /CD16- classical monocytes polarized toward a non-classical CD14++ CD16+ CD206+ phenotype after phagocytosis of ucMSC and expressed programmed death ligand-1 and IL-10, while TNF-α was reduced. ucMSC-primed monocytes induced Foxp3+ regulatory T cell formation in mixed lymphocyte reactions. These results demonstrate that infused MSC are rapidly phagocytosed by monocytes, which subsequently migrate from the lungs to other body sites. Phagocytosis of ucMSC induces phenotypical and functional changes in monocytes, which subsequently modulate cells of the adaptive immune system. It can be concluded that monocytes play a crucial role in mediating, distributing, and transferring the immunomodulatory effect of MSC. Stem Cells 2018;36:602-615.


Subject(s)
Immunomodulation , Lung/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Phagocytosis , Animals , B7-H1 Antigen/immunology , Heterografts , Humans , Interleukin-10/immunology , Male , Mice , Tumor Necrosis Factor-alpha/immunology
13.
Front Immunol ; 8: 1042, 2017.
Article in English | MEDLINE | ID: mdl-28894451

ABSTRACT

The immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells (Bregs). It is, however, unknown how MSC interact with B cells under inflammatory conditions. In this study, adipose tissue-derived MSC were pretreated with 50 ng/ml IFN-γ for 96 h (MSC-IFN-γ) to simulate inflammatory conditions. Mature B cells were obtained from spleens by CD43- selection. B cells were co-cultured with MSC and stimulated with anti-IgM, anti-CD40, and IL-2; and after 7 days, B cell proliferation, phenotype, Immunoglobulin-G (IgG), and IL-10 production were analyzed. MSC did not inhibit B cell proliferation but increased the percentage of CD38high CD24high B cells (Bregs) and IL-10 production, while MSC-IFN-γ significantly reduced B cell proliferation and inhibited IgG production by B cells in a more potent fashion but did not induce Bregs or IL-10 production. Both MSC and MSC-IFN-γ required proximity to target cells and being metabolically active to exert their effects. Indoleamine 2,3 dioxygenase expression was highly induced in MSC-IFN-γ and was responsible of the anti-proliferative and Breg reduction since addition of tryptophan (TRP) restored MSC properties. Immunological conditions dictate the effect of MSC on B cell function. Under immunological quiescent conditions, MSC stimulate Breg induction; whereas, under inflammatory conditions, MSC inhibit B cell proliferation and maturation through depletion of TRP. This knowledge is useful for customizing MSC therapy for specific purposes by appropriate pretreatment of MSC.

14.
Sci Rep ; 7(1): 12100, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935974

ABSTRACT

Mesenchymal stromal cells (MSC) are a promising therapy for immunological disorders. However, culture expanded MSC are large and get trapped in the capillary networks of the lungs after intravenous infusion, where they have a short survival time. Hypothetically, living cells are a risk for tumor formation. To reduce risks associated with MSC infusion and improve the distribution in the body, we generated membrane particles (MP) of MSC and MSC stimulated with IFN-γ (MPγ). Tracking analysis and electron microscopy indicated that the average size of MP was 120 nm, and they showed a round shape. MP exhibited ATPase, nucleotidase and esterase activity, indicating they are enzymatically active. MP and MPγ did not physically interact with T cells and had no effect on CD4+ and CD8+ T cells proliferation. However, MP and MPγ selectively bound to monocytes and decreased the frequency of pro-inflammatory CD14+CD16+ monocytes by induction of selective apoptosis. MP and MPγ increased the percentage of CD90 positive monocytes, and MPγ but not MP increased the percentage of anti-inflammatory PD-L1 monocytes. MPγ increased mRNA expression of PD-L1 in monocytes. These data demonstrate that MP have immunomodulatory properties and have potential as a novel cell-free therapy for treatment of immunological disorders.


Subject(s)
B7-H1 Antigen/immunology , Cell-Derived Microparticles/immunology , Inflammation Mediators/immunology , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Adipose Tissue/cytology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell-Derived Microparticles/ultrastructure , Cells, Cultured , Gene Expression/drug effects , Immunomodulation/immunology , Inflammation Mediators/metabolism , Interferon-gamma/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mesenchymal Stem Cells/metabolism , Microscopy, Electron, Transmission , Monocytes/metabolism , Particle Size , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Stem Cell Res Ther ; 8(1): 140, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28595619

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSC) possess immunomodulatory properties and low immunogenicity, both crucial properties for their development into an effective cellular immunotherapy. They have shown benefit in clinical trials targeting liver diseases; however the efficacy of MSC therapy will benefit from improvement of the immunomodulatory and immunogenic properties of MSC. METHODS: MSC derived from human umbilical cords (ucMSC) were treated for 3 days in vitro with various inflammatory factors, interleukins, vitamins and serum deprivation. Their immunogenicity and immunomodulatory capacity were examined by gene-expression analysis, surface-marker expressions, IDO activity, PGE2 secretion and inhibition of T cell proliferation and IFNγ production. Furthermore, their activation of NK cell cytotoxicity was investigated via CD107a expression on NK cells. The immunomodulatory capacity, biodistribution and survival of pre-treated ucMSC were investigated in a CCl4-induced liver disease mouse model. In addition, capacity of pre-treated MSC to ameliorate liver inflammation was examined in an ex vivo liver inflammation co-culture model. RESULTS: IFN-γ and a multiple cytokine cocktail (MC) consisting of IFN-γ, TGFß and retinoic acid upregulated the expression of immunomodulatory factor PD-L1 and IDO activity. Subsequently, both treatments enhanced the capacity of ucMSC to inhibit CD4 and CD8 T cell proliferation and IFN-γ production. The susceptibility of ucMSC for NK cell lysis was decreased by IFN-ß, TGFß and MC treatment. In vivo, no immunomodulation was observed by the ucMSC. Four hours after intravenous infusion in mice with CCl4-induced inflammatory liver injury, the majority of ucMSC were trapped in the lungs. Rapid clearance of ucMSC(VitB6), ucMSC(Starv + VitB6) and ucMSC(MC) and altered bio-distribution of ucMSC(TGFß) compared to untreated ucMSC was observed. In the ex vivo co-culture system with inflammatory liver slices ucMSC(MC) showed significantly enhanced modulatory capacity compared to untreated ucMSC. CONCLUSIONS: The present study demonstrates the responsiveness of ucMSC to in vitro optimisation treatment. The observed improvements in immunomodulatory capacity as well as immunogenicity after MC treatment may improve the efficacy of ucMSC as immunotherapy targeted towards liver inflammation.


Subject(s)
Inflammation/therapy , Liver Diseases/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Animals , Cell Proliferation/drug effects , Cytokines/administration & dosage , Humans , Inflammation/genetics , Inflammation/pathology , Interferon-gamma/genetics , Killer Cells, Natural/drug effects , Liver Diseases/genetics , Liver Diseases/pathology , Mice , Umbilical Cord/cytology , Umbilical Cord/transplantation
16.
Stem Cells Int ; 2017: 4960831, 2017.
Article in English | MEDLINE | ID: mdl-28642794

ABSTRACT

Mesenchymal stem cells derived from adipose tissue (ASC) have immune regulatory function, which makes them interesting candidates for cellular therapy. ASC cultures are however heterogeneous in phenotype. It is unclear whether all ASC contribute equally to immunomodulatory processes. ASC are also responsive to cytokine stimulation, which may affect the ratio between more and less potent ASC populations. In the present study, we determined IL-6 receptor (CD126 and CD130 subunits) and IFN-γ receptor (CD119) expression on ASC by flow cytometry. The production of IL-6 and IFN-γ was measured by ELISA and the frequency of IL-6 and IFN-γ secreting cells by ELISPOT. The results showed that ASC did not express CD126, and only 10-20% of ASC expressed CD130 on their surface, whereas 18-31% of ASC expressed CD119. ASC produced high levels of IL-6 and 100% of ASC were capable of secreting IL-6. Stimulation by IFN-γ or TGF-ß had no effect on IL-6 secretion by ASC. IFN-γ was produced by only 1.4% of ASC, and TGF-ß significantly increased the frequency to 2.7%. These results demonstrate that ASC cultures are heterogeneous in their cytokine secretion and receptor expression profiles. This knowledge can be employed for selection of potent, cytokine-producing, or responsive ASC subsets for cellular immunotherapy.

17.
Stem Cells Dev ; 25(18): 1342-54, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27349989

ABSTRACT

Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of action and the therapeutic components of MSC. Such knowledge allows better identification of diseases that are responsive to MSC treatment, optimization of the MSC product, and development of therapy based on functional components of MSC. To close in on the components that carry the therapeutic immunomodulatory activity of MSC, we generated MSC that were unable to respond to inflammatory signals or secrete immunomodulatory factors, but preserved their cellular integrity [heat-inactivated MSC (HI-MSC)]. Secretome-deficient HI-MSC and control MSC showed the same biodistribution and persistence after infusion in mice with ischemic kidney injury. Both control and HI-MSC induced mild inflammatory responses in healthy mice and dramatic increases in interleukin-10, and reductions in interferon gamma levels in sepsis mice. In vitro experiments showed that opposite to control MSC, HI-MSC lacked the capability to suppress T-cell proliferation or induce regulatory B-cell formation. However, both HI-MSC and control MSC modulated monocyte function in response to lipopolysaccharides. The results of this study demonstrate that, in particular disease models, the immunomodulatory effect of MSC does not depend on their secretome or active cross-talk with immune cells, but on recognition of MSC by monocytic cells. These findings provide a new view on MSC-induced immunomodulation and help identify key components of the therapeutic effects of MSC.


Subject(s)
Immunomodulation , Mesenchymal Stem Cells/immunology , Animals , B-Lymphocytes/cytology , Cell Movement , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Immunophenotyping , Inflammation/pathology , Infusions, Intravenous , Lipopolysaccharides , Male , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Monocytes/cytology , Sepsis/immunology , Sepsis/pathology , T-Lymphocytes/cytology , Tissue Distribution
18.
Stem Cells Dev ; 25(8): 586-97, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26914168

ABSTRACT

Mesenchymal stromal cells (MSC) are increasingly used as an investigative therapeutic product for immune disorders and degenerative disease. Typically, MSC are isolated from human tissue, expanded in culture, and cryopreserved until usage. The safety and efficacy of MSC therapy will depend on the phenotypical and functional characteristics of MSC. The freeze-thawing procedure may change these characteristics. Furthermore, the cells encounter a microenvironment after administration that may impact their properties. It has been demonstrated that the majority of MSC localize to the lungs after intravenous infusion, making this the site to study the effects of the in vivo milieu on administered MSC. In this study, we investigated the effect of freeze-thawing and the mouse lung microenvironment on human adipose tissue-derived MSC. There were effects of freeze-thawing on the whole genome expression profile of MSC, although the effects did not exceed interdonor differences. There were no major changes in the expression of hemostatic regulators on transcriptional level, but significantly increased expression of procoagulant tissue factor on the surface of thawed adipose MSC, correlating with increased procoagulant activity of thawed cells. Exposure for 2 h to the lung microenvironment had a major effect on MSC gene expression and affected several immunological pathways. This indicates that MSC undergo functional changes shortly after infusion and this may influence the efficacy of MSC to modulate inflammatory responses. The results of this study demonstrate that MSC rapidly alter in response to the local milieu and disease-specific conditions may shape MSC after administration.


Subject(s)
Cryopreservation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Transcriptome , Animals , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Female , Freezing , Homeostasis , Humans , Infusions, Intravenous , Lung/immunology , Lung/metabolism , Metabolic Networks and Pathways , Mice, Inbred C57BL
19.
Stem Cells Dev ; 23(19): 2328-35, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25105211

ABSTRACT

Mesenchymal stem cells (MSC) are present in the bone marrow, from where they are thought to migrate through the blood stream to the sites of injury. However, virtually all tissues contain resident MSC that may contribute to local regenerative and immunomodulatory processes, thereby hypothetically preempting the need for recruiting MSC through the bloodstream. Although there is some indication for circulating MSC in animal models, there is little solid evidence for the mobilization and migration of MSC in the human circulation. In the present study, we were unable to detect MSC in the blood of healthy individuals. We then searched for MSC in the blood of ten patients with end-stage renal disease, ten patients with end-stage liver disease, and in eight heart transplant patients with biopsy-proven rejection by culturing of mononuclear cells under MSC-supporting culture conditions. In none of these patient categories, MSC were identified in the blood. MSC were, however, found in the blood of a severe trauma patient with multiple fractures, suggesting that disruption of bone marrow leads to the release of MSC into the blood stream. The conclusion of this study is that MSC are not recruited into the circulation in patients with injured solid organs and during aggressive immune responses after transplantation.


Subject(s)
Cell Movement , Fractures, Bone/pathology , Mesenchymal Stem Cells/cytology , Bone Marrow/metabolism , Cell Differentiation/physiology , Fractures, Bone/metabolism , Humans , Leukocytes/cytology
20.
Transplantation ; 97(11): 1110-8, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24704664

ABSTRACT

BACKGROUND: Although CD8+ T cell-mediated and natural killer (NK) cell-mediated cytotoxicity against renal tubular epithelial cells (TECs) plays a crucial role during rejection, the degree of inhibition of these lytic immune responses by immunosuppressive drugs is unknown. We investigated the CD8 T-cell and NK cell responses induced by TECs in vitro and questioned how these processes are affected by immunosuppressive drugs. METHODS: Donor-derived TECs were co-cultured with recipient peripheral blood monocyte cells. Proliferation of CD8+ T cells and NK cell subsets was assessed using PKH dilution assay. CD107a degranulation and europium release assay were performed to explore CD8+-mediated and NK cell-mediated TEC lysis. Experiments were conducted in the absence or presence of tacrolimus (10 ng/mL), everolimus (10 ng/mL), and prednisolone (200 ng/mL). RESULTS: Tubular epithelial cells induce significant CD8+ T-cell and NK cell proliferation. All immunosuppressive drugs significantly inhibited TEC-induced CD8+ T-cell proliferation. Interestingly, prednisolone was the most powerful inhibitor of NK cell proliferation. CD8-mediated and NK cell-mediated early lytic responses were marked by strong degranulation after an encounter of unstimulated TECs, represented by a high cell surface expression of CD107a. However, with the use of interferon-γ-activated and tumor necrosis factor-α-activated TECs, the NK degranulation response was significantly reduced and CD8 degranulation response was even more enhanced (P<0.05). Tubular epithelial cell-induced CD8 degranulation and CD8-mediated TEC lysis were preferentially inhibited by tacrolimus and prednisolone, and not by everolimus. Although tacrolimus showed the most inhibitory effect on the degranulation of NK cells, NK cell-mediated TEC lysis was efficiently inhibited by prednisolone (P<0.05). CONCLUSION: Overall, our data point to a limited efficacy of immunosuppressive drugs on CD8+ T cell-mediated and NK cell-mediated lysis of human renal TECs.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Epithelial Cells/drug effects , Immunosuppressive Agents/pharmacology , Kidney Tubules/drug effects , Killer Cells, Natural/drug effects , Cell Proliferation , Cytokines/metabolism , Europium/chemistry , Everolimus , Humans , Inflammation , Lysosomal-Associated Membrane Protein 1/metabolism , Monocytes/cytology , Monocytes/drug effects , Prednisolone/pharmacology , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Tacrolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...