Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339164

ABSTRACT

The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. Further, damage to the endothelium can be both a cause and a consequence of many diseases, especially in elderly people. The purpose of this study was to carry out immunological and biochemical profiling of elderly people with acute ischemic stroke (AIS), chronic cerebral circulation insufficiency (CCCI), prediabetes or newly diagnosed type II diabetes mellitus (DM), and subcortical ischemic vascular dementia (SIVD). Socio-demographic, lifestyle, and cognitive data were obtained. Biochemical, hematological, and immunological analyses were carried out, and extracellular vesicles (EVs) with endothelial CD markers were assessed. The greatest number of significant deviations from conditionally healthy donors (HDs) of the same age were registered in the SIVD group, a total of 20, of which 12 were specific and six were non-specific but with maximal differences (as compared to the other three groups) from the HDs group. The non-specific deviations were for the MOCA (Montreal Cognitive Impairment Scale), the MMSE (Mini Mental State Examination) and life satisfaction self-assessment scores, a decrease of albumin levels, and ADAMTS13 (a Disintegrin and Metalloproteinase with a Thrombospondin Type 1 motif, member 13) activity, and an increase of the VWF (von Willebrand factor) level. Considering the significant changes in immunological parameters (mostly Th17-like cells) and endothelial CD markers (CD144 and CD34), vascular repair was impaired to the greatest extent in the DM group. The AIS patients showed 12 significant deviations from the HD controls, including three specific to this group. These were high NEFAs (non-esterified fatty acids) and CD31 and CD147 markers of EVs. The lowest number of deviations were registered in the CCCI group, nine in total. There were significant changes from the HD controls with no specifics to this group, and just one non-specific with a maximal difference from the control parameters, which was α1-AGP (alpha 1 acid glycoprotein, orosomucoid). Besides the DM patients, impairments of vascular repair were also registered in the CCCI and AIS patients, with a complete absence of such in patients with dementia (SIVD group). On the other hand, microvascular damage seemed to be maximal in the latter group, considering the biochemical indicators VWF and ADAMTS13. In the DM patients, a maximum immune response was registered, mainly with Th17-like cells. In the CCCI group, the reaction was not as pronounced compared to other groups of patients, which may indicate the initial stages and/or compensatory nature of organic changes (remodeling). At the same time, immunological and biochemical deviations in SIVD patients indicated a persistent remodeling in microvessels, chronic inflammation, and a significant decrease in the anabolic function of the liver and other tissues. The data obtained support two interrelated assumptions. Taking into account the primary biochemical factors that trigger the pathological processes associated with vascular pathology and related diseases, the first assumption is that purine degradation in skeletal muscle may be a major factor in the production of uric acid, followed by its production by non-muscle cells, the main of which are endothelial cells. Another assumption is that therapeutic factors that increase the levels of endothelial progenitor cells may have a therapeutic effect in reducing the risk of cerebrovascular disease and related neurodegenerative diseases.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Dementia, Vascular , Diabetes Mellitus, Type 2 , Ischemic Stroke , Humans , Aged , Ischemic Stroke/complications , von Willebrand Factor , Endothelial Cells , Diabetes Mellitus, Type 2/complications , Cognitive Dysfunction/complications , Brain Ischemia/complications
2.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373530

ABSTRACT

The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects.


Subject(s)
COVID-19 , Esterases , Serum Albumin, Human , Aged , Humans , Esterases/metabolism , Plasma/enzymology
3.
Am J Physiol Heart Circ Physiol ; 312(3): H622-H631, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27923785

ABSTRACT

The purpose of this study was to investigate the genetic mechanisms of the defense vascular reactions in response to the diving reflex in humans with polymorphisms in the genes ADBR2, ACE, AGTR1, BDKRB2, and REN We hypothesized that protective vascular reactions, in response to the diving reflex, are genetically determined and are distinguished in humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin system. A total of 80 subjects (19 ± 1.4 yr) participated in the study. The intensity of the vascular response was estimated using photoplethysmogram. The I/D polymorphism (rs4340) of ACE was analyzed by PCR. REN (G/A, rs2368564), AGTR1 (A/C, rs5186), BDKRB2 (T/C, rs1799722), and ADBR2 (A/G, rs1042713) polymorphisms were examined using the two-step multiplex PCR followed by carrying allele hybridization on the biochip. Subjects with the BDKRB2 (C/C), ACE (D/D), and ADBR2 (G/G, G/A) genotypes exhibited the strongest peripheral vasoconstriction in response to diving. In subjects with a combination of the BDKRB2 (C/C) plus ACE (D/D) genotypes, we observed the lowest pulse wave amplitude and pulse transit time values and the highest arterial blood pressure during face immersion compared with the heterozygous individuals, suggesting that these subjects are more susceptible to diving hypoxia. This study observed that humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin systems demonstrate various expressions of protective vascular reactions in response to the diving reflex. The obtained results might be used in estimation of resistance to hypoxia of any origin in human beings or in a medical practice.NEW & NOTEWORTHY Our study demonstrates that the vascular reactions in response to the diving reflex are genetically determined and depend on gene polymorphisms of the kinin-bradykinin and the renin-angiotensin systems.


Subject(s)
Blood Vessels/physiology , Diving Reflex/genetics , Diving Reflex/physiology , Blood Pressure/genetics , Blood Pressure/physiology , Bradykinin/physiology , Female , Homozygote , Humans , Hypoxia/genetics , Hypoxia/metabolism , Male , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/physiology , Vasoconstriction/genetics , Vasoconstriction/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...