Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190532

ABSTRACT

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Subject(s)
Autophagosomes , Lipid Droplets , Autophagy , Membrane Lipids
2.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645754

ABSTRACT

ATG2 proteins facilitate bulk lipid transport between membranes. ATG2 is an essential autophagy protein, but ATG2 also localizes to lipid droplets (LDs), and genetic depletion of ATG2 increases LD numbers while impairing fatty acid transport from LDs to mitochondria. How ATG2 supports LD homeostasis and whether lipid transport regulates this homeostasis remains unknown. Here we demonstrate that ATG2 is preferentially recruited to phospholipid monolayers such as those surrounding LDs rather than to phospholipid bilayers. In vitro, ATG2 can drive phospholipid transport from artificial LDs with rates that correlate with the binding affinities, such that phospholipids are moved much more efficiently when one of the ATG2-interacting structures is an artificial LD. ATG2 is thought to exhibit 'bridge-like" lipid transport, with lipids flowing across the protein between membranes. We mutated key amino acids within the bridge to form a transport-dead ATG2 mutant (TD-ATG2A) which we show specifically blocks bridge-like, but not shuttle-like, lipid transport in vitro. TD-ATG2A still localizes to LDs, but is unable to rescue LD accumulation in ATG2 knockout cells. Thus, ATG2 has a natural affinity for, and an enhanced activity upon LD surfaces and uses bridge-like lipid transport to support LD dynamics in cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...