Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(11): 112501, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154392

ABSTRACT

The reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood. The conclusion is that seniority is largely conserved in the first πg_{9/2} orbital.

2.
Phys Rev Lett ; 121(19): 192502, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30468583

ABSTRACT

Lifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50. The onset of collectivity at Z=32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector ρ field in shell-structure evolution.

3.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474951

ABSTRACT

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

4.
Phys Rev Lett ; 116(11): 112503, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035298

ABSTRACT

The neutron-rich nucleus ^{144}Ba (t_{1/2}=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV ^{144}Ba beam on a 1.0-mg/cm^{2} ^{208}Pb target. The measured value of the matrix element, ⟨3_{1}^{-}∥M(E3)∥0_{1}^{+}⟩=0.65(+17/-23) eb^{3/2}, corresponds to a reduced B(E3) transition probability of 48(+25/-34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

5.
Phys Rev Lett ; 104(16): 162501, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20482043

ABSTRACT

A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

6.
Phys Rev Lett ; 95(18): 182501, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16383897

ABSTRACT

The excitation energy of the lowest-energy superdeformed band in 196Pb is established using the techniques of time-correlated gamma-ray spectroscopy. Together with previous measurements on 192Pb and 194Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a "superdeformed shell gap."

7.
Phys Rev Lett ; 88(4): 042501, 2002 Jan 28.
Article in English | MEDLINE | ID: mdl-11801113

ABSTRACT

The excitation energy, spin, and parity of the yrast superdeformed band in 152Dy have been firmly established. The evidence comes mainly from the measured properties of a 4011 keV single-step transition connecting the yrast superdeformed level fed by the 693 keV transition to the 27- yrast state. Four additional, weaker, linking gamma rays have been placed as well. The excitation energy of the lowest superdeformed band member is 10 644 keV and its spin and parity are determined to be 24+.

8.
Phys Rev Lett ; 89(28 Pt 1): 282501, 2002 Dec 31.
Article in English | MEDLINE | ID: mdl-12513136

ABSTRACT

Nine transitions of dipole character have been identified linking an excited superdeformed (SD) band in 152Dy to the yrast SD band. As a result, the excitation energy of the lowest level in the excited SD band has been measured to be 14 238 keV. This corresponds to a 1.3 MeV excitation above the SD ground state. The levels in this band have tentatively been determined to be of negative parity and odd spin. The measured properties are consistent with an interpretation in terms of a rotational band built on a collective octupole vibration.

9.
Phys Rev Lett ; 86(13): 2746-9, 2001 Mar 26.
Article in English | MEDLINE | ID: mdl-11290029

ABSTRACT

The linear polarization of gamma rays between excited and yrast superdeformed (SD) states in 190Hg was measured using the four-element CLOVER detectors of the EUROBALL IV gamma-ray spectrometer. This measurement shows in a model-independent way that the interband transitions which compete with the highly collective in-band quadrupole transitions are largely enhanced electric dipoles. Not only do these results represent the first measurement of the multipolarity of transitions between different SD states, but they also provide strong evidence for the interpretation of the structures in the SD minimum of the A approximately 190 region in terms of octupole excitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...