Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 635787, 2021.
Article in English | MEDLINE | ID: mdl-34045942

ABSTRACT

Background: Identifying patients with intractable epilepsy who would benefit from therapeutic chronic vagal nerve stimulation (VNS) preoperatively remains a major clinical challenge. We have developed a statistical model for predicting VNS efficacy using only routine preimplantation electroencephalogram (EEG) recorded with the TruScan EEG device (Brazdil et al., 2019). It remains to be seen, however, if this model can be applied in different clinical settings. Objective: To validate our model using EEG data acquired with a different recording system. Methods: We identified a validation cohort of eight patients implanted with VNS, whose preimplantation EEG was recorded on the BrainScope device and who underwent the EEG recording according to the protocol. The classifier developed in our earlier work, named Pre-X-Stim, was then employed to classify these patients as predicted responders or non-responders based on the dynamics in EEG power spectra. Predicted and real-world outcomes were compared to establish the applicability of this classifier. In total, two validation experiments were performed using two different validation approaches (single classifier or classifier voting). Results: The classifier achieved 75% accuracy, 67% sensitivity, and 100% specificity. Only two patients, both real-life responders, were classified incorrectly in both validation experiments. Conclusion: We have validated the Pre-X-Stim model on EEGs from a different recording system, which indicates its application under different technical conditions. Our approach, based on preoperative EEG, is easily applied and financially undemanding and presents great potential for real-world clinical use.

2.
J Magn Reson Imaging ; 48(5): 1217-1227, 2018 11.
Article in English | MEDLINE | ID: mdl-29707834

ABSTRACT

BACKGROUND: Segmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. PURPOSE: To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. STUDY TYPE: Prospective. SUBJECTS: Twenty healthy volunteers. SEQUENCES: 1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. ASSESSMENT: Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T2 -weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. STATISTICAL TESTS: t-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. RESULTS: CLASS segmentation reached better agreement with manual segmentation than did SCT (P < 0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P < 0.001) but comparable with CLASS in entire spinal cord segmentation (P = 0.17 and P = 0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P < 0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance. DATA CONCLUSION: The presented semiautomatic method in combination with the proposed approach to data registration and analyses of spinal cord diffusivity can potentially be used as an alternative to atlas-based segmentation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1217-1227.


Subject(s)
Cervical Cord/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Echo-Planar Imaging , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Adult , Algorithms , Anisotropy , Female , Humans , Image Processing, Computer-Assisted/methods , Machine Learning , Male , Observer Variation , Prospective Studies , Spinal Cord Injuries/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...