Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(37): 25772-25779, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37724343

ABSTRACT

In this work, the effect of 10 MeV electron irradiation on the structure and electrical properties of bulk α-In2Se3 crystals is studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray microanalysis, atomic-force microscopy, and Raman spectroscopy methods. Droplets of 200-500 nm in size were detected on the bulk α-In2Se3 crystal surface. The droplets can be formations with the γ-In2Se3 crystalline phase. The current-voltage characteristics measured by conductive atomic-force microscopy are different on and outside the droplets after electron irradiation. On the droplets, slightly better conductive properties were detected after irradiation with the electron fluence of 1015 cm-2. It is found that local resistance increases significantly for both on and outside the droplets after irradiation with the electron fluence of 1017 cm-2. Our study shows that electron irradiation can contribute to the disappearance of ferroelectric domains in the bulk α-In2Se3 crystals. Also, the distribution of surface potentials measured by Kelvin probe force microscopy becomes more uniform after electron irradiation. The results obtained in the work allow us to calculate the operating time of the device containing α-In2Se3 under conditions of long-term electron irradiation with high-energy electrons. The study shows that α-In2Se3 is a very promising material for applications in the aerospace and nuclear industries.

2.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570183

ABSTRACT

Equiatomic medium-entropy alloy (MEA) FeNiCr-B4C (0, 1, and 3 wt.% B4C) coatings were deposited onto an AISI 1040 steel substrate using pulsed laser cladding. Based on an SEM microstructural analysis, it was found that the cross-sections of all the obtained specimens were characterized by an average coating thickness of 400 ± 20 µm, a sufficiently narrow (100 ± 20 µm) "coating-substrate" transition zone, and the presence of a small number of defects, including cracks and pores. An XRD analysis showed that the formed coatings consisted of a single face-centered cubic (FCC) γ-phase and the space group Fm-3m, regardless of the B4C content. However, additional TEM analysis of the FeNiCr coating with 3 wt.% B4C revealed a two-phase FCC structure consisting of grains (FCC-1 phase, Fm-3m) up to 1 µm in size and banded interlayers (FCC-2 phase, Fm-3m) between the grains. The grains were clean with a low density of dislocations. Raman spectroscopy confirmed the presence of B4C carbides inside the FeNiCr (1 and 3 wt.% B4C) coatings, as evidenced by detected peaks corresponding to amorphous carbon and peaks indicating the stretching of C-B-C chains. The mechanical characterization of the FeNiCr-B4C coatings specified that additions of 1 and 3 wt.% B4C resulted in a notable increase in microhardness of 16% and 38%, respectively, with a slight decrease in ductility of 4% and 10%, respectively, compared to the B4C-free FeNiCr coating. Thus, the B4C addition can be considered a promising method for strengthening laser-cladded MEA FeNiCr-B4C coatings.

3.
Materials (Basel) ; 15(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431685

ABSTRACT

The absorption of waves of the centimeter and millimeter wavebands in composites with Finemet alloy particles and carbon nanotubes has been studied. It has been established that ferromagnetic resonance and antiresonance are observed in such composites. A method is proposed for calculating the effective dynamic magnetic permeability of a composite containing both a random distribution of ferromagnetic particles and a part of the particles oriented in the same way. In the approximation of effective parameters, the dependences of the transmission and reflection coefficients of microwaves are calculated. It is shown that the theoretical calculation confirms the existence of resonant features of these dependences caused by ferromagnetic resonance and antiresonance. The theory based on the introduction of effective parameters satisfactorily describes the course of the field dependence of the coefficients and the presence of resonance features in these dependences. The frequency dependence of the complex permittivity of the composite is determined. The dependence of the complex magnetic permeability on the magnetic field for millimeter-wave frequencies is calculated.

4.
Article in English | MEDLINE | ID: mdl-23143586

ABSTRACT

Special features of ultrasonic pulse wave field detection with concave regions of the wave fronts are investigated with the use of ultrasonic laser interferometry technique. Experimental proofs of the wave front with concave regions are obtained and it is found that the nonmonotonic wave front profiles are well described by the fourth-order even polynomial. The model proposed is applied to the investigation of the spatiotemporal structure of elastic wave fields on solid surfaces. The results obtained can be used for estimating the local wave front curvature.

SELECTION OF CITATIONS
SEARCH DETAIL
...