Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38545737

ABSTRACT

In recent years, various brain imaging techniques have been used as input signals for brain-computer interface (BCI) systems. Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are two prominent techniques in this field, each with its own advantages and limitations. As a result, there is a growing tendency to integrate these methods in a hybrid within BCI systems. The primary aim of this study is to identify highly functional brain regions within an EEG + NIRS-based BCI system. To achieve this, the research focused on identifying EEG electrodes positioned in different brain lobes and then investigating the functionality of each lobe. The methodology involved segmenting the EEG + NIRS dataset into 2.4 s time windows, and then extracting band-power based features from these segmented signals. A classification algorithm, specifically the k-nearest neighbor algorithm, was then used to classify the features. The result was a remarkable classification accuracy (CA) of 95.54%±1.31 when using the active brain region within the hybrid model. These results underline the effectiveness of the proposed approach, as it outperformed both standalone EEG and NIRS modalities in terms of CA by 5.19% and 40.90%, respectively. Furthermore, the results confirm the considerable potential of the method in classifying EEG + NIRS signals recorded during tasks such as reading text while scrolling in different directions, including right, left, up and down. This research heralds a promising step towards enhancing the capabilities of BCI systems by harnessing the synergistic power of EEG and NIRS technologies.

2.
PLoS One ; 17(4): e0265904, 2022.
Article in English | MEDLINE | ID: mdl-35413050

ABSTRACT

The event related P300 potentials, positive waveforms in electroencephalography (EEG) signals, are often utilized in brain computer interfaces (BCI). Many studies have been carried out to improve the performance of P300 speller systems either by developing signal processing algorithms and classifiers with different architectures or by designing new paradigms. In this study, a new paradigm is proposed for this purpose. The proposed paradigm combines two remarkable properties of being a 3D animation and utilizing column-only flashings as opposed to classical paradigms which are based on row-column flashings in 2D manner. The new paradigm is utilized in a traditional two-layer artificial neural networks model with a single output neuron, and numerous experiments are conducted to evaluate and compare the performance of the proposed paradigm with that of the classical approach. The experimental results, including statistical significance tests, are presented for single and multiple EEG electrode usage combinations in 1, 3 and 15 flashing repetitions to detect P300 waves as well as to recognize target characters. Using the proposed paradigm, the best average classification accuracy rates on the test data are improved from 89.97% to 93.90% (an improvement of 4.36%) for 1 flashing, from 97.11% to 98.10% (an improvement of 1.01%) for 3 flashings and from 99.70% to 99.81% (an improvement of 0.11%) for 15 flashings when all electrodes, included in the study, are utilized. On the other hand, the accuracy rates are improved by 9.69% for 1 flashing, 4.72% for 3 flashings and 1.73% for 15 flashings when the proposed paradigm is utilized with a single EEG electrode (P8). It is observed that the proposed speller paradigm is especially useful in BCI systems designed for few EEG electrodes usage, and hence, it is more suitable for practical implementations. Moreover, all participants, given a subjective test, declared that the proposed paradigm is more user-friendly than classical ones.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electrodes , Electroencephalography/methods , Event-Related Potentials, P300/physiology , Humans , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...