Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(8): 10554-10569, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36791306

ABSTRACT

Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si-R or Si-O-R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g-1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.

2.
Article in English | MEDLINE | ID: mdl-35575682

ABSTRACT

The impact of the binding, solution structure, and solution dynamics of poly(vinylidene fluoride) (PVDF) with silicon on its performance as compared to traditional graphite and Li1.05Ni0.33Mn0.33Co0.33O2 (NMC) electrode materials was explored. Through refractive index (RI) measurements, the concentration of the binder adsorbed on the surface of electrode materials during electrode processing was determined to be less than half of the potentially available material resulting in excessive free binder in solution. Using ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS), it was found that PVDF forms a conformal coating over the entirety of the silicon particle. This is in direct contrast to graphite-PVDF and NMC-PVDF slurries, where PVDF only covers part of the graphite surface, and the PVDF chains make a network-like graphite-PVDF structure. Conversely, a thick layer of PVDF covers NMC particles, but the coating is porous, allowing for ion and electronic transport. The homogeneous coating of silicon breaks up percolation pathways, resulting in poor cycling performance of silicon materials as widely reported. These results indicate that the Si-PVDF interactions could be modified from a binder to a dispersant.

4.
J Am Chem Soc ; 137(12): 4046-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25762361

ABSTRACT

A simple and effective method to introduce precise amounts of doping in nanomaterials produced from the bottom-up assembly of colloidal nanoparticles (NPs) is described. The procedure takes advantage of a ligand displacement step to incorporate controlled concentrations of halide ions while removing carboxylic acids from the NP surface. Upon consolidation of the NPs into dense pellets, halide ions diffuse within the crystal structure, doping the anion sublattice and achieving n-type electrical doping. Through the characterization of the thermoelectric properties of nanocrystalline PbS, we demonstrate this strategy to be effective to control charge transport properties on thermoelectric nanomaterials assembled from NP building blocks. This approach is subsequently extended to PbTe(x)Se(1-x)@PbS core-shell NPs, where a significant enhancement of the thermoelectric figure of merit is achieved.

5.
J Am Chem Soc ; 136(8): 3225-37, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24533466

ABSTRACT

Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring. Here we report the thermoelectric properties of the pseudoternary 2% Na-doped (PbTe)1-2x(PbSe)x(PbS)x system. The (PbTe)1-2x(PbSe)x(PbS)x system is an excellent platform to study phase competition between entropically driven atomic mixing (solid solution behavior) and enthalpy-driven phase separation. We observe that the thermoelectric properties of the PbTe-PbSe-PbS 2% Na doped are superior to those of 2% Na-doped PbTe-PbSe and PbTe-PbS, respectively, achieving a ZT ≈2.0 at 800 K. The material exhibits an increased the power factor by virtue of valence band modification combined with a very reduced lattice thermal conductivity deriving from alloy scattering and point defects. The presence of sulfide ions in the rock-salt structure alters the band structure and creates a plateau in the electrical conductivity and thermopower from 600 to 800 K giving a power factor of 27 µW/cmK(2). The very low total thermal conductivity values of 1.1 W/m·K of the x = 0.07 composition is accounted for essentially by phonon scattering from solid solution defects rather than the assistance of endotaxial nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...