Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Trends Neurosci ; 23(2): 53-7, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10652540

ABSTRACT

The recent advent of novel high-resolution imaging methods has created a flurry of exciting observations that address a century-old question: what are biological signals that regulate formation and elimination of dendritic spines? Contrary to the traditional belief that the spine is a stable storage site of long-term neuronal memory, the emerging picture is of a dynamic structure that can undergo fast morphological variations. Recent conflicting reports on the regulation of spine morphology lead to the proposal of a unifying hypothesis for a common mechanism involving changes in postsynaptic intracellular Ca2+ concentration, [Ca2+]i: a moderate rise in [Ca2+]i causes elongation of dendritic spines, while a very large increase in [Ca2+]i causes fast shrinkage and eventual collapse of spines. This hypothesis provides a parsimonious explanation for conflicting reports on activity-dependent changes in dendritic spine morphology, and might link these changes to functional plasticity in central neurons.


Subject(s)
Dendrites/metabolism , Animals , Calcium/metabolism , Cell Culture Techniques , Cell Size , Humans , Models, Biological , Neuronal Plasticity , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...