Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929096

ABSTRACT

Insomnia is a major global health issue, highlighting the need for treatments that are both effective and safe. Valerian extract, a traditional remedy for sleep problems, offers potential therapeutic options. This research examined the potential sleep-enhancing effects of VA (Valerian Pdr%2) in mice. The study evaluated sleep quality by comparing the impact of the VA extract against melatonin on brain activity, using electrocorticography (ECoG) to assess changes in brain waves. For this purpose, the study utilized two experimental models on BALB/c mice to explore the effects of caffeine-induced insomnia and pentobarbital-induced sleep. In the first model, 25 mice were assigned to five groups to test the effects of caffeine (caffeine, 7.5 mg/kg i.p) alone, caffeine with melatonin (2 mg/kg), or caffeine with different doses of valerian extract (100 or 300 mg/kg) given orally on brain activity, assessed via electrocorticography (ECoG) and further analyses on the receptor proteins and neurotransmitters. In the second model, a different set of 25 mice were divided into five groups to examine the impact of pentobarbital (42 mg/kg) alone, with melatonin, or with the valerian extract on sleep induction, observing the effects 45 min after administration. The study found that ECoG frequencies were lower in groups treated with melatonin and two doses of valerian extract (100 and 300 mg/kg), with 300 mg/kg showing the most significant effect in reducing frequencies compared to the caffeine control group, indicating enhanced sleep quality (p < 0.05). This was supported by increased levels of serotonin, melatonin, and dopamine and higher levels of certain brain receptors in the melatonin and valerian extract groups (p < 0.05). Modulatory efficacy for the apoptotic markers in the brain was also noted (p < 0.05). Additionally, melatonin and both doses of VA increased sleep duration and reduced sleep onset time compared to the pentobarbital control, which was particularly notable with high doses. In conclusion, the findings suggest that high doses (300 mg/kg) of valerian extract enhance both the quantity and quality of sleep through the GABAergic pathway and effectively increase sleep duration while reducing the time to fall asleep in a pentobarbital-induced sleep model in mice.

2.
Brain Behav ; 12(5): e2577, 2022 05.
Article in English | MEDLINE | ID: mdl-35451243

ABSTRACT

INTRODUCTION: Parkinson's disease is one of the progressive neurodegenerative diseases from which people suffer for years. The mechanism of this disease is associated with a decrease in the number of dopaminergic neurons in the substantia nigra (SN) while Lewy bodies are still present. As a result, both motor-ridity, tremor, and bradykinesia-and non-motor symptoms such as anxiety and depression. Nowadays, it is well known that the cause behind Parkinson's disease is mainly environmental changes, genetic susceptibility, and toxins. Unfortunately, there is no cure for the disease but treatments. The replacement of lost neurons, α-synuclein and apomorphine, is currently being studied for new therapies. This article focuses on history, mechanism, factors causing Parkinson's disease as well as future therapies for the cure of the diseases. METHODOLOGY: Data were collected from medical journals published on PubMed, The Lancet, Cells, and Nature Reviews Neurology databases with a predefined search strategy. All articles considering new therapies for Parkinson's disease were considered. RESULTS: The pathophysiology of Parkinson's disease is currently reasonably understood. However, there is no definitive cure so all the treatments focus mainly on reducing or limiting the symptoms. Current treatment studies focus on genetics, replacing lost neurons, α-synuclein and apomorphine. CONCLUSION: Parkinson's disease is the most common movement disorder worldwide because of the loss of dopaminergic neurons in the substantia nigra. Its symptoms include motor dysfunctions such as rigidity, tremor, and bradykinesia and non-motor dysfunctions such as anxiety and depression. Through genetics, environmental changes and toxins analysis, it is now known that future new therapies are working on replacing lost neurons, α-synuclein and apomorphine.


Subject(s)
Parkinson Disease , alpha-Synuclein , Apomorphine/pharmacology , Apomorphine/therapeutic use , Dopaminergic Neurons , Humans , Hypokinesia , Parkinson Disease/genetics , Parkinson Disease/therapy , Tremor/etiology , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...