Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 468(1-2): 93-100, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32976839

ABSTRACT

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory. Here, we report the generation of new isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using CRISPR-Cas9 to facilitate the study of how complete FMRP loss, independent of genetic background, drives molecular and cellular alterations relevant for FXS. After differentiating these stem cell tools into excitatory neurons, we systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties over time. Using whole-cell patch clamp analyses, we found that FMR1y/- neurons overall showed an increased intrinsic membrane excitability compared to age-matched FMR1y/+ controls, with no discernable alternations in synaptic transmission. Surprisingly, longitudinal analyses of cell intrinsic defects revealed that a majority of significant changes emerged early following in vitro differentiation and some were not stable over time. Collectively, this study provides a new isogenic hPSC model which can be further leveraged by the scientific community to investigate basic mechanisms of FMR1 gene function relevant for FXS. Moreover, our results suggest that precocious changes in the intrinsic membrane properties during early developmental could be a critical cellular pathology ultimately contributing to cortical hyperexcitability in FXS.


Subject(s)
Cell Differentiation , Cell Membrane/metabolism , Fragile X Mental Retardation Protein/genetics , Human Embryonic Stem Cells/metabolism , Membrane Potentials , Neurons/metabolism , Synaptic Transmission , Cell Line , Cell Membrane/genetics , Fragile X Mental Retardation Protein/metabolism , Human Embryonic Stem Cells/cytology , Humans
2.
Circ Res ; 105(8): 764-74, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19745162

ABSTRACT

RATIONALE: The adult heart possesses a pool of progenitor cells stored in myocardial niches, but the mechanisms involved in the activation of this cell compartment are currently unknown. OBJECTIVE: Ca2+ promotes cell growth raising the possibility that changes in intracellular Ca2+ initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. METHODS AND RESULTS: Ca2+ oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca2+. These findings were confirmed in the heart of transgenic mice in which enhanced green fluorescent protein was under the control of the c-kit promoter. Ca2+ oscillations in hCPCs were regulated by the release of Ca2+ from the endoplasmic reticulum through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the reuptake of Ca2+ by the sarco-/endoplasmic reticulum Ca2+ pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs, whereas ryanodine receptors were not detected. Although Na+-Ca2+ exchanger, store-operated Ca2+ channels and plasma membrane Ca2+ pump were present and functional in hCPCs, they had no direct effects on Ca2+ oscillations. Conversely, Ca2+ oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca2+ oscillations in hCPCs were coupled with the entry of cells into the cell cycle and 5-bromodeoxyuridine incorporation. Induction of Ca2+ oscillations in hCPCs before their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. CONCLUSION: IP3R-mediated Ca2+ mobilization control hCPC growth and their regenerative potential.


Subject(s)
Biological Clocks/physiology , Calcium/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Stem Cells/metabolism , Adenosine Triphosphate/pharmacology , Adult , Animals , Endoplasmic Reticulum/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Histamine/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , Mice, Transgenic , Myocardium/cytology , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Histamine/metabolism , Receptors, Purinergic/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...