Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biochem Sci ; 49(2): 97-98, 2024 02.
Article in English | MEDLINE | ID: mdl-37980188

ABSTRACT

Bacteriophages have been a treasure trove for the discovery of fundamental biological principles and the expansion of our enzymatic toolkit since the dawn of molecular biology. In a recent study by Wolfram-Schauerte et al. these ubiquitous bacteria-infecting viruses reveal yet another new biological concept: post-translational modification through covalent RNA-protein linkages.


Subject(s)
Bacteriophages , Bacteriophages/genetics , RNA , Protein Processing, Post-Translational
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834708

ABSTRACT

The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.


Subject(s)
Chromatin , RNA , RNA/metabolism , RNA, Messenger/metabolism , Base Sequence , Magnetic Resonance Spectroscopy , Binding Sites
3.
Biomolecules ; 12(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35883485

ABSTRACT

The SARS-CoV-2 nucleocapsid (N) protein is crucial for the highly organized packaging and transcription of the genomic RNA. Studying atomic details of the role of its intrinsically disordered regions (IDRs) in RNA recognition is challenging due to the absence of structure and to the repetitive nature of their primary sequence. IDRs are known to act in concert with the folded domains of N and here we use NMR spectroscopy to identify the priming events of N interacting with a regulatory SARS-CoV-2 RNA element. 13C-detected NMR experiments, acquired simultaneously to 1H detected ones, provide information on the two IDRs flanking the N-terminal RNA binding domain (NTD) within the N-terminal region of the protein (NTR, 1-248). We identify specific tracts of the IDRs that most rapidly sense and engage with RNA, and thus provide an atom-resolved picture of the interplay between the folded and disordered regions of N during RNA interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Magnetic Resonance Spectroscopy , Protein Binding , RNA, Viral/metabolism
4.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Article in English | MEDLINE | ID: mdl-34453696

ABSTRACT

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Nucleic Acid Conformation , RNA, Spliced Leader
5.
Biomol NMR Assign ; 15(2): 287-295, 2021 10.
Article in English | MEDLINE | ID: mdl-33770349

ABSTRACT

The current COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a worldwide health crisis, necessitating coordinated scientific research and urgent identification of new drug targets for treatment of COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome comprises a single RNA of about 30 kb in length, in which 14 open reading frames (ORFs) have been annotated, and encodes approximately 30 proteins. The first two-thirds of the SARS-CoV-2 genome is made up of two large overlapping open-reading-frames (ORF1a and ORF1b) encoding a replicase polyprotein, which is subsequently cleaved to yield 16 so-called non-structural proteins. The non-structural protein 1 (Nsp1), which is considered to be a major virulence factor, suppresses host immune functions by associating with host ribosomal complexes at the very end of its C-terminus. Furthermore, Nsp1 facilitates initiation of viral RNA translation via an interaction of its N-terminal domain with the 5' untranslated region (UTR) of the viral RNA. Here, we report the near-complete backbone chemical-shift assignments of full-length SARS-CoV-2 Nsp1 (19.8 kDa), which reveal the domain organization, secondary structure and backbone dynamics of Nsp1, and which will be of value to further NMR-based investigations of both the biochemical and physiological functions of Nsp1.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Models, Molecular , Protein Domains
6.
Biomol NMR Assign ; 15(1): 129-135, 2021 04.
Article in English | MEDLINE | ID: mdl-33270159

ABSTRACT

The current outbreak of the highly infectious COVID-19 respiratory disease is caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). To fight the pandemic, the search for promising viral drug targets has become a cross-border common goal of the international biomedical research community. Within the international Covid19-NMR consortium, scientists support drug development against SARS-CoV-2 by providing publicly available NMR data on viral proteins and RNAs. The coronavirus nucleocapsid protein (N protein) is an RNA-binding protein involved in viral transcription and replication. Its primary function is the packaging of the viral RNA genome. The highly conserved architecture of the coronavirus N protein consists of an N-terminal RNA-binding domain (NTD), followed by an intrinsically disordered Serine/Arginine (SR)-rich linker and a C-terminal dimerization domain (CTD). Besides its involvement in oligomerization, the CTD of the N protein (N-CTD) is also able to bind to nucleic acids by itself, independent of the NTD. Here, we report the near-complete NMR backbone chemical shift assignments of the SARS-CoV-2 N-CTD to provide the basis for downstream applications, in particular site-resolved drug binding studies.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Crystallography, X-Ray , Dimerization , Drug Design , Hydrogen , Hydrogen-Ion Concentration , Nitrogen Isotopes , Phosphoproteins/chemistry , Protein Binding , Protein Domains , Protein Interaction Mapping , Protein Structure, Secondary
7.
Biomol NMR Assign ; 14(2): 329-333, 2020 10.
Article in English | MEDLINE | ID: mdl-32770392

ABSTRACT

The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus' proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.


Subject(s)
Betacoronavirus/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Nitrogen Isotopes/chemistry , Nucleic Acids/metabolism , Proton Magnetic Resonance Spectroscopy , Viral Nonstructural Proteins/chemistry , Protein Binding , Protein Domains , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...