Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34196299

ABSTRACT

The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent remodeling. Here, we show that basophil granulocytes infiltrated infarcted murine hearts, with a peak occurring between days 3 and 7. Antibody-mediated and genetic depletion of basophils deteriorated cardiac function and resulted in enhanced scar thinning after MI. Mechanistically, we found that basophil depletion was associated with a shift from reparative Ly6Clo macrophages toward increased numbers of inflammatory Ly6Chi monocytes in the infarcted myocardium. Restoration of basophils in basophil-deficient mice by adoptive transfer reversed this proinflammatory phenotype. Cellular alterations in the absence of basophils were accompanied by lower cardiac levels of IL-4 and IL-13, two major cytokines secreted by basophils. Mice with basophil-specific IL-4/IL-13 deficiency exhibited a similarly altered myeloid response with an increased fraction of Ly6Chi monocytes and aggravated cardiac function after MI. In contrast, IL-4 induction in basophils via administration of the glycoprotein IPSE/α-1 led to improved post-MI healing. These results in mice were corroborated by the finding that initially low counts of blood basophils in patients with acute MI were associated with a worse cardiac outcome after 1 year, characterized by a larger scar size. In conclusion, we show that basophils promoted tissue repair after MI by increasing cardiac IL-4 and IL-13 levels.


Subject(s)
Basophils/immunology , Interleukin-13/immunology , Interleukin-4/immunology , Myocardial Infarction/immunology , Animals , Basophils/pathology , Basophils/physiology , Disease Models, Animal , Humans , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-4/deficiency , Interleukin-4/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...