Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 368(6492): 746-753, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32409471

ABSTRACT

Malarial rhythmic fevers are the consequence of the synchronous bursting of red blood cells (RBCs) on completion of the malaria parasite asexual cell cycle. Here, we hypothesized that an intrinsic clock in the parasite Plasmodium chabaudi underlies the 24-hour-based rhythms of RBC bursting in mice. We show that parasite rhythms are flexible and lengthen to match the rhythms of hosts with long circadian periods. We also show that malaria rhythms persist even when host food intake is evenly spread across 24 hours, suggesting that host feeding cues are not required for synchrony. Moreover, we find that the parasite population remains synchronous and rhythmic even in an arrhythmic clock mutant host. Thus, we propose that parasite rhythms are generated by the parasite, possibly to anticipate its circadian environment.


Subject(s)
Circadian Rhythm/physiology , Fever/physiopathology , Fever/parasitology , Host-Parasite Interactions/physiology , Malaria/physiopathology , Malaria/parasitology , Plasmodium chabaudi/physiology , Animals , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Cues , Darkness , Eating , Erythrocytes/parasitology , Feeding Behavior , Gene Expression Regulation , Host-Parasite Interactions/genetics , Mice , Mice, Mutant Strains , Plasmodium chabaudi/genetics , Transcription, Genetic
2.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452855

ABSTRACT

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Subject(s)
Cryptochromes/metabolism , F-Box Proteins/metabolism , Animals , CLOCK Proteins/genetics , Cell Nucleus/metabolism , Crosses, Genetic , Cytoplasm/metabolism , F-Box Proteins/genetics , Female , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...