Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(17): 3855-3861.e3, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35952668

ABSTRACT

Sponges, among the oldest extant multicellular organisms on Earth,1 play a key role in the cycling of nutrients in many aquatic ecosystems.2-5 They need to employ strategies to prevent clogging of their internal filter system by solid wastes,6-8 but self-cleaning mechanisms are largely unknown. It is commonly assumed that sponges remove solid waste with the outflowing water through distinct outflow openings (oscula).3,9 Here, we present time-lapse video footage and analyses of sponge waste revealing a completely different mechanism of particle removal in the Caribbean tube sponge Aplysina archeri. This sponge actively moves particle-trapping mucus against the direction of its internal water flow and ejects it into the surrounding water from its seawater inlet pores (ostia) through periodic surface contractions that have been described earlier as "sneezing."10,11 Visually, it appears as if the sponge is continuously streaming mucus-embedded particles and sneezes to shed this particulate waste, resulting in a notable flux of detritus that is actively consumed by sponge-associated fauna. The new data are used to estimate production of detritus for this abundant sponge on Caribbean coral reefs. Last, we discuss why waste removal from the sponge inhalant pores may be a common feature among sponges and compare the process in sponges to equivalent mechanisms of mucus transport in other animals, including humans.


Subject(s)
Ecosystem , Porifera , Animals , Bays , Coral Reefs , Humans , Mucus , Seawater , Sneezing , Water
2.
ISME J ; 16(9): 2076-2086, 2022 09.
Article in English | MEDLINE | ID: mdl-35654830

ABSTRACT

The ability of organisms to combine autotrophy and heterotrophy gives rise to one of the most successful nutritional strategies on Earth: mixotrophy. Sponges are integral members of shallow-water ecosystems and many host photosynthetic symbionts, but studies on mixotrophic sponges have focused primarily on species residing in high-light environments. Here, we quantify the contribution of photoautotrophy to the respiratory demand and total carbon diet of the sponge Chondrilla caribensis, which hosts symbiotic cyanobacteria and lives in low-light environments. Although the sponge is net heterotrophic at 20 m water depth, photosynthetically fixed carbon potentially provides up to 52% of the holobiont's respiratory demand. When considering the total mixotrophic diet, photoautotrophy contributed an estimated 7% to total daily carbon uptake. Visualization of inorganic 13C- and 15N-incorporation using nanoscale secondary ion mass spectrometry (NanoSIMS) at the single-cell level confirmed that a portion of nutrients assimilated by the prokaryotic community was translocated to host cells. Photoautotrophy can thus provide an important supplemental source of carbon for sponges, even in low-light habitats. This trophic plasticity may represent a widespread strategy for net heterotrophic sponges hosting photosymbionts, enabling the host to buffer against periods of nutritional stress.


Subject(s)
Porifera , Solar Energy , Animals , Carbon , Diet , Ecosystem , Water
3.
Coral Reefs ; 40(4): 1137-1153, 2021.
Article in English | MEDLINE | ID: mdl-34720372

ABSTRACT

A paramount challenge in coral reef ecology is to estimate the abundance and composition of the communities residing in such complex ecosystems. Traditional 2D projected surface cover estimates neglect the 3D structure of reefs and reef organisms, overlook communities residing in cryptic reef habitats (e.g., overhangs, cavities), and thus may fail to represent biomass estimates needed to assess trophic ecology and reef function. Here, we surveyed the 3D surface cover, biovolume, and biomass (i.e., ash-free dry weight) of all major benthic taxa on 12 coral reef stations on the island of Curaçao (Southern Caribbean) using structure-from-motion photogrammetry, coral point counts, in situ measurements, and elemental analysis. We then compared our 3D benthic community estimates to corresponding estimates of traditional 2D projected surface cover to explore the differences in benthic community composition using different metrics. Overall, 2D cover was dominated (52 ± 2%, mean ± SE) by non-calcifying phototrophs (macroalgae, turf algae, benthic cyanobacterial mats), but their contribution to total reef biomass was minor (3.2 ± 0.6%). In contrast, coral cover (32 ± 2%) more closely resembled coral biomass (27 ± 6%). The relative contribution of erect organisms, such as gorgonians and massive sponges, to 2D cover was twofold and 11-fold lower, respectively, than their contribution to reef biomass. Cryptic surface area (3.3 ± 0.2 m2 m-2 planar reef) comprised half of the total reef substrate, rendering two thirds of coralline algae and almost all encrusting sponges (99.8%) undetected in traditional assessments. Yet, encrusting sponges dominated reef biomass (35 ± 18%). Based on our quantification of exposed and cryptic reef communities using different metrics, we suggest adjustments to current monitoring approaches and highlight ramifications for evaluating the ecological contributions of different taxa to overall reef function. To this end, our metric conversions can complement other benthic assessments to generate non-invasive estimates of the biovolume, biomass, and elemental composition (i.e., standing stocks of organic carbon and nitrogen) of Caribbean coral reef communities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00338-021-02118-6.

4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-33972407

ABSTRACT

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Subject(s)
Anthozoa/physiology , Calcium Carbonate/metabolism , Climate Change , Coral Reefs , Animals , Anthozoa/chemistry , Calcium Carbonate/chemistry , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater/chemistry
5.
Glob Chang Biol ; 24(11): 5084-5095, 2018 11.
Article in English | MEDLINE | ID: mdl-30152194

ABSTRACT

Increased temperature and CO2 levels are considered key drivers of coral reef degradation. However, individual assessments of ecological responses (calcification) to these stressors are often contradicting. To detect underlying drivers of heterogeneity in coral calcification responses, we developed a procedure for the inclusion of stress-effect relationships in ecological meta-analyses. We applied this technique to a dataset of 294 empirical observations from 62 peer-reviewed publications testing individual and combined effects of elevated temperature and pCO2 on coral calcification. Our results show an additive interaction between warming and acidification, which reduces coral calcification by 20% when pCO2 levels exceed 700 ppm and temperature increases by 3°C. However, stress levels varied among studies and significantly affected outcomes, with unaffected calcification rates under moderate stresses (pCO2  ≤ 700 ppm, ΔT < 3°C). Future coral reef carbon budgets will therefore depend on the magnitude of pCO2 and temperature elevations and, thus, anthropogenic CO2 emissions. Accounting for stress-effect relationships enabled us to identify additional drivers of heterogeneity including coral taxa, life stage, habitat, food availability, climate, and season. These differences can aid reef management identifying refuges and conservation priorities, but without a global effort to reduce CO2 emissions, coral capacity to build reefs will be at risk.


Subject(s)
Anthozoa/physiology , Calcification, Physiologic , Climate Change , Animals , Carbon Dioxide/metabolism , Coral Reefs , Ecosystem , Hydrogen-Ion Concentration , Seasons , Seawater , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...