Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ear Hear ; 44(4): 776-786, 2023.
Article in English | MEDLINE | ID: mdl-36706073

ABSTRACT

OBJECTIVES: Cardiac responses (e.g., heart rate changes) due to an autonomous response to sensory stimuli have been reported in several studies. This study investigated whether heart rate information extracted from functional near-infrared spectroscopy (fNIRS) data can be used to assess the discrimination of speech sounds in sleeping infants. This study also investigated the adaptation of the heart rate response over multiple, sequential stimulus presentations. DESIGN: fNIRS data were recorded from 23 infants with no known hearing loss, aged 2 to 10 months. Speech syllables were presented using a habituation/dishabituation test paradigm: the infant's heart rate response was first habituated by repeating blocks of one speech sound; then, the heart rate response was dishabituated with the contrasting (novel) speech sound. This stimulus presentation sequence was repeated for as long as the infants were asleep. RESULTS: The group-level average heart rate response to the novel stimulus was greater than that to the habituated first sound, indicating that sleeping infants were able to discriminate the speech sound contrast. A significant adaptation of the heart rate responses was seen over the session duration. CONCLUSION: The dishabituation response could be a valuable marker for speech discrimination, especially when used in conjunction with the fNIRS hemodynamic response.


Subject(s)
Deafness , Speech Perception , Humans , Infant , Speech Perception/physiology , Heart Rate , Spectroscopy, Near-Infrared , Speech
2.
Parasitol Res ; 120(5): 1563-1570, 2021 May.
Article in English | MEDLINE | ID: mdl-33788020

ABSTRACT

Rhipicephalus microplus is an ixodid tick with a pantropical distribution that represents a serious threat to livestock. West Africa was free of this tick until 2007, when its introduction into Benin was reported. Shortly thereafter, further invasion of this tick species into other West African countries was identified. In this paper, we describe the first detection of R. microplus in Guinea and list the vector-borne haemoparasites that were detected in the invading and indigenous Boophilus species. In 2018, we conducted a small-scale survey of ticks infesting cattle in three administrative regions of Guinea: N`Zerekore, Faranah, and Kankan. The tick species were identified by examining their morphological characteristics and by sequencing their COI gene and ITS-2 gene fragments. R. microplus was found in each studied region. In the ticks, we found the DNA of Babesia bigemina, Anaplasma marginale, Anaplasma platys, and Ehrlichia sp. The results of this study indicate that R. microplus was introduced into Guinea in association with cows from Mali and/or the Ivory Coast.


Subject(s)
Anaplasma marginale/isolation & purification , Anaplasma/isolation & purification , Babesia/isolation & purification , Ehrlichia/isolation & purification , Rhipicephalus/microbiology , Rhipicephalus/parasitology , Anaplasma/genetics , Anaplasma marginale/genetics , Animals , Babesia/genetics , Benin , Cattle , Cattle Diseases/parasitology , Cote d'Ivoire , Ehrlichia/genetics , Female , Guinea , Livestock/parasitology , Tick Infestations/veterinary
3.
Acta Trop ; 214: 105790, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309594

ABSTRACT

Ngari virus is a mosquito-borne virus belonging to the genus Orthobunyavirus (Peribunyaviridae family). This virus is pathogenic to humans and causes severe illness. Ngari virus is present in several African countries, including Madagascar. Here, we report the detection of Ngari virus in ixodid ticks collected from cows in Guinea. A tick survey was conducted in March-November of 2018 in six regions of Guinea. The sample comprised 710 pools, with a total of 2067 ticks belonging to five species collected from 197 cows. At the initial stage, we screened a subsample of tick pools of vector-borne viruses with a multiplex genus-specific primer panel. In the second stage of the study, we narrowed the search and screened all the samples by qPCR for the detection of Ngari virus. All positive samples were sequenced with primers flanking Ngari virus-specific fragments on the S and M segments. We found Ngari virus in 12 pools that were formed from engorged ticks collected from livestock in three villages of the Kindia and Kankan regions. Sequencing of the S and M segments confirmed that the detected viruses belong to Ngari virus, and the viruses were most similar to the strain Adrar, which was isolated in Mauritania. We detected viral RNA in ticks of the following species: Amblyomma variegatum, Rhipicephalus geigyi, and Rh. (Boophilus) spp. There is no evidence that ixodid ticks are competent vectors of the Ngari virus. Most likely, the ticks obtained the virus through blood from an infected host. The study of engorged ticks can be recommended as a simpler approach for the wide screening of the Ngari virus and subsequent testing of cattle and mosquitos in those locations where the PCR-positive ticks were collected.


Subject(s)
Bunyaviridae Infections/veterinary , Cattle Diseases/epidemiology , Ixodidae/virology , Orthobunyavirus/isolation & purification , Tick Infestations/veterinary , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/transmission , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Cattle Diseases/virology , Female , Guinea/epidemiology , Humans , Orthobunyavirus/genetics , Tick Infestations/epidemiology , Tick Infestations/parasitology
5.
J Mol Biol ; 399(1): 1-8, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20227420

ABSTRACT

Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.


Subject(s)
Drosophila Proteins/metabolism , Kinesins/metabolism , Pyrimidines/pharmacology , Thiones/pharmacology , Xenopus Proteins/metabolism , Amino Acid Sequence , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Kinesins/genetics , Microtubules/metabolism , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Xenopus Proteins/genetics , Xenopus laevis
6.
Eur Biophys J ; 36(6): 675-81, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17333163

ABSTRACT

Tetrameric motor proteins of the Kinesin-5 family are essential for eukaryotic cell division. The microscopic mechanism by which Eg5, the vertebrate Kinesin-5, drives bipolar mitotic spindle formation remains unknown. Here we show in optical trapping experiments that full-length Eg5 moves processively and stepwise along microtubule bundles. Interestingly, the force produced by individual Eg5 motors typically reached only approximately 2 pN, one-third of the stall force of Kinesin-1. Eg5 typically detached from microtubules before stalling. This behavior may reflect a regulatory mechanism important for the role of Eg5 in the mitotic spindle.


Subject(s)
Kinesins/physiology , Microtubules/physiology , Xenopus Proteins/physiology , Animals , Kinesins/chemistry , Microtubules/chemistry , Motion , Optical Tweezers , Xenopus Proteins/chemistry , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...