Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(2): 168395, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38097109

ABSTRACT

In this study, we utilize Protein Residue Networks (PRNs), constructed using Local Spatial Pattern (LSP) alignment, to explore the dynamic behavior of Catabolite Activator Protein (CAP) upon the sequential binding of cAMP. We employed the Degree Centrality of these PRNs to investigate protein dynamics on a sub-nanosecond time scale, hypothesizing that it would reflect changes in CAP's entropy related to its thermal motions. We show that the binding of the first cAMP led to an increase in stability in the Cyclic-Nucleotide Binding Domain A (CNBD-A) and destabilization in CNBD-B, agreeing with previous reports explaining the negative cooperativity of cAMP binding in terms of an entropy-driven allostery. LSP-based PRNs also allow for the study of Betweenness Centrality, another graph-theoretical characteristic of PRNs, providing insights into global residue connectivity within CAP. Using this approach, we were able to correctly identify amino acids that were shown to be critical in mediating allosteric interactions in CAP. The agreement between our studies and previous experimental reports validates our method, particularly with respect to the reliability of Degree Centrality as a proxy for entropy related to protein thermal dynamics. Because LSP-based PRNs can be easily extended to include dynamics of small organic molecules, polynucleotides, or other allosteric proteins, the methods presented here mark a significant advancement in the field, positioning them as vital tools for a fast, cost-effective, and accurate analysis of entropy-driven allostery and identification of allosteric hotspots.


Subject(s)
Allosteric Regulation , Cyclic AMP Receptor Protein , Sequence Alignment , Cyclic AMP Receptor Protein/chemistry , Entropy , Molecular Dynamics Simulation , Protein Binding , Reproducibility of Results , Sequence Alignment/methods
2.
bioRxiv ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37693538

ABSTRACT

Although the αC-ß4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, Local Spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-ß4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-ß4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.

3.
Biochem J ; 480(16): 1299-1316, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37551632

ABSTRACT

Conventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCß-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and down-regulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.


Subject(s)
Neoplasms , Neurodegenerative Diseases , Humans , Isoenzymes/metabolism , Neurodegenerative Diseases/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Mutation , Neoplasms/genetics
4.
J Chem Phys ; 158(8): 081001, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36859094

ABSTRACT

Allosteric regulation of proteins continues to be an engaging research topic for the scientific community. Models describing allosteric communication have evolved from focusing on conformation-based descriptors of protein structural changes to appreciating the role of internal protein dynamics as a mediator of allostery. Here, we explain a "violin model" for allostery as a contemporary method for approaching the Cooper-Dryden model based on redistribution of protein thermal fluctuations. Based on graph theory, the violin model makes use of community network analysis to functionally cluster correlated protein motions obtained from molecular dynamics simulations. This Review provides the theory and workflow of the methodology and explains the application of violin model to unravel the workings of protein kinase A.


Subject(s)
Community Networks , Molecular Dynamics Simulation , Humans , Allosteric Regulation , Motion
5.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993163

ABSTRACT

Conventional protein kinase C (PKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent accumulation of aberrantly active enzyme. Here, we examine how a single residue in the C1A domain of PKCß, arginine 42 (R42), permits quality-control degradation when mutated to histidine in cancer (R42H) and blocks downregulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (R42P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and downregulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity to that of WT. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.

6.
Proc Natl Acad Sci U S A ; 119(47): e2215420119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36375071

ABSTRACT

Topological analysis of protein residue networks (PRNs) is a common method that can help to understand the roles of individual residues. Here, we used protein kinase A as a study object and asked what already known functionally important residues can be detected by network analysis. Along several traditional approaches to weight edges in PRNs we used local spatial pattern (LSP) alignment that assigns high weights to edges only if CαCß vectors for the corresponding residues retain their mutual positions and orientation. Our results show that even short molecular dynamic simulations of 10 to 20 ns can give convergent values for betweenness and degree centralities calculated from the LSP-based PRNs. Using these centralities, we were able to clearly distinguish a group of residues that are highly conserved in protein kinases and play important functional and regulatory roles. In comparison, traditional methods based on cross-correlation and linear mutual information were much less efficient for this particular task. These results call for reevaluation of the current methods to generate PRNs.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Molecular Dynamics Simulation
7.
Sci Signal ; 15(753): eabk1147, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36166510

ABSTRACT

Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.


Subject(s)
Diglycerides , Spinocerebellar Ataxias , Animals , Diglycerides/metabolism , Humans , Mice , Mutation , Protein Kinase C , Purkinje Cells/metabolism , Spinocerebellar Ataxias/genetics
8.
J Biol Chem ; 296: 100746, 2021.
Article in English | MEDLINE | ID: mdl-33957122

ABSTRACT

It is difficult to imagine where the signaling community would be today without the Protein Data Bank. This visionary resource, established in the 1970s, has been an essential partner for sharing information between academics and industry for over 3 decades. We describe here the history of our journey with the protein kinases using cAMP-dependent protein kinase as a prototype. We summarize what we have learned since the first structure, published in 1991, why our journey is still ongoing, and why it has been essential to share our structural information. For regulation of kinase activity, we focus on the cAMP-binding protein kinase regulatory subunits. By exploring full-length macromolecular complexes, we discovered not only allostery but also an essential motif originally attributed to crystal packing. Massive genomic data on disease mutations allows us to now revisit crystal packing as a treasure chest of possible protein:protein interfaces where the biological significance and disease relevance can be validated. It provides a new window into exploring dynamic intrinsically disordered regions that previously were deleted, ignored, or attributed to crystal packing. Merging of crystallography with cryo-electron microscopy, cryo-electron tomography, NMR, and millisecond molecular dynamics simulations is opening a new world for the signaling community where those structure coordinates, deposited in the Protein Data Bank, are just a starting point!


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/history , Animals , Cryoelectron Microscopy , History, 20th Century , History, 21st Century , Humans , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Structure-Activity Relationship
9.
Sci Signal ; 14(678)2021 04 13.
Article in English | MEDLINE | ID: mdl-33850054

ABSTRACT

The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCßII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.


Subject(s)
Mechanistic Target of Rapamycin Complex 2 , Peptides , Protein Kinase C , Proto-Oncogene Proteins c-akt , Amino Acid Motifs , Animals , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
10.
IUBMB Life ; 72(12): 2584-2590, 2020 12.
Article in English | MEDLINE | ID: mdl-33166426

ABSTRACT

Protein kinase C (PKC) family members are multi-domain proteins whose function is exquisitely tuned by interdomain interactions that control the spatiotemporal dynamics of their signaling. Despite extensive mechanistic studies on this family of enzymes, no structure of a full-length enzyme that includes all domains has been solved. Here, we take into account the biochemical mechanisms that control autoinhibition, the properties of each individual domain, and previous structural studies to propose a unifying model for the general architecture of PKC family members. This model shows how the C2 domains of conventional and novel PKC isozymes, which have different topologies and different positions in the primary structure, can occupy the same position in the tertiary structure of the kinase. This common architecture of conventional and novel PKC isozymes provides a framework for understanding how disease-associated mutations impair PKC function.


Subject(s)
Protein Kinase C/chemistry , Protein Kinase C/metabolism , Animals , Humans , Isoenzymes , Kinetics , Protein Conformation , Protein Domains , Signal Transduction
11.
Hum Mutat ; 41(3): 619-631, 2020 03.
Article in English | MEDLINE | ID: mdl-31765060

ABSTRACT

MUSK encodes the muscle-specific receptor tyrosine kinase (MuSK), a key component of the agrin-LRP4-MuSK-DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early-onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled-like cysteine-rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with ß2-adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.


Subject(s)
Mutation , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Cholinergic/genetics , Synapses/genetics , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-2 Receptor Agonists/therapeutic use , Alleles , Amino Acid Substitution , Animals , CRISPR-Cas Systems , Cell Line , DNA Mutational Analysis , Female , Gene Targeting , Humans , Mice , Models, Molecular , Molecular Conformation , Muscle Proteins/metabolism , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/metabolism , Pedigree , Phosphorylation , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/metabolism , Structure-Activity Relationship , Synapses/metabolism
12.
Proc Natl Acad Sci U S A ; 116(30): 15052-15061, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285328

ABSTRACT

A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.


Subject(s)
Adenosine Triphosphate/chemistry , Cyclic AMP-Dependent Protein Kinases/chemistry , Enzyme Inhibitors/chemistry , Magnesium/chemistry , Peptides/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Allosteric Site , Amino Acid Sequence , Catalytic Domain , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Inhibitors/metabolism , Kinetics , Magnesium/metabolism , Molecular Dynamics Simulation , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Substrate Specificity , Thermodynamics
13.
Proc Natl Acad Sci U S A ; 116(30): 14979-14988, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31292254

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson's disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a "brake" that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2.


Subject(s)
Catalytic Domain , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Molecular Dynamics Simulation , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation, Missense
14.
IUBMB Life ; 71(6): 685-696, 2019 06.
Article in English | MEDLINE | ID: mdl-31063633

ABSTRACT

The intricacies of allosteric regulation of protein kinases continue to engage the research community. Allostery, or control from a distance, is seen as a fundamental biomolecular mechanism for proteins. From the traditional methods of conformational selection and induced fit, the field has grown to include the role of protein motions in defining a dynamics-based allosteric approach. Harnessing of these continuous motions in the protein to exert allosteric effects can be defined by a "violin" model that focuses on distributions of protein vibrations as opposed to concerted pathways. According to this model, binding of an allosteric modifier causes global redistribution of dynamics in the protein kinase domain that leads to changes in its catalytic properties. This model is consistent with the "entropy-driven allostery" mechanism proposed by Cooper and Dryden in 1984 and does not require, but does not exclude, any major structural changes. We provide an overview of practical implementation of the violin model and how it stands amidst the other known models of protein allostery. Protein kinases have been described as the biomolecules of interest. © 2019 IUBMB Life, 71(6):685-696, 2019.


Subject(s)
Allosteric Regulation/genetics , Protein Kinases/chemistry , Proteins/chemistry , Binding Sites/genetics , Entropy , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Conformation , Protein Kinases/genetics , Proteins/genetics , Signal Transduction/genetics
15.
IUBMB Life ; 71(6): 672-684, 2019 06.
Article in English | MEDLINE | ID: mdl-31059206

ABSTRACT

Eukaryotic protein kinases (EPKs) regulate almost every biological process and have evolved to be dynamic molecular switches; this is in stark contrast to metabolic enzymes, which have evolved to be efficient catalysts. In particular, the highly conserved active site of every EPK is dynamically and transiently assembled by a process that is highly regulated and unique for every protein kinase. We review here the essential features of the kinase core, focusing on the conserved motifs and residues that are embedded in every kinase. We explore, in particular, how the hydrophobic core architecture specifically drives the dynamic assembly of the regulatory spine and consequently the organization of the active site where the γ-phosphate of ATP is positioned by a convergence of conserved motifs including a conserved regulatory triad for transfer to a protein substrate. In conclusion, we show how the flanking N- and C-terminal tails often classified as intrinsically disordered regions, as well as flanking domains, contribute in a highly kinase-specific manner to the regulation of the conserved kinase core. Understanding this process as well as how one kinase activates another remains as two of the big challenges for the kinase signaling community. © 2019 IUBMB Life, 71(6):672-684, 2019.


Subject(s)
Amino Acid Motifs/genetics , Eukaryota/genetics , Protein Kinases/genetics , Adenosine Triphosphate/genetics , Catalytic Domain/genetics , Conserved Sequence/genetics , Hydrophobic and Hydrophilic Interactions , Phosphates/metabolism , Protein Kinases/chemistry , Signal Transduction/genetics , Substrate Specificity
16.
Trends Biochem Sci ; 44(4): 300-311, 2019 04.
Article in English | MEDLINE | ID: mdl-30611608

ABSTRACT

Since publication of the crystal structure of protein kinase (PK)A three decades ago, a structural portrait of the conserved kinase core has been drawn. The next challenge is to elucidate structures of full-length kinases and to address the intrinsically disordered regions (IDRs) that typically flank the core as well as the small linear motifs (SLiMs) that are embedded within the IDRs. It is increasingly apparent that unstructured regions integrate the kinase catalytic chassis into multienzyme-based regulatory networks. The extracellular signal-regulated kinase-ribosomal S6 PK-phosphoinositide-dependent kinase (ERK-RSK-PDK) complex is an excellent example to demonstrate how IDRs and SLiMs govern communication between four different kinase catalytic cores to mediate activation and how in molecular terms these promote the formation of kinase heterodimers in a context dependent fashion.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Protein Kinases/chemistry , Protein Kinases/metabolism , Humans , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Protein Domains
18.
Biochem Soc Trans ; 46(3): 587-597, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29678954

ABSTRACT

Allostery is a fundamental regulatory mechanism in biology. Although generally accepted that it is a dynamics-driven process, the exact molecular mechanism of allosteric signal transmission is hotly debated. We argue that allostery is as a part of a bigger picture that also includes fractal-like properties of protein interior, hierarchical protein folding and entropy-driven molecular recognition. Although so far all these phenomena were studied separately, they stem from the same common root: self-organization of polypeptide chains and, thus, has to be studied collectively. This merge will allow the cross-referencing of a broad spectrum of multi-disciplinary data facilitating progress in all these fields.


Subject(s)
Entropy , Proteins/metabolism , Allosteric Regulation , Fractals , Protein Folding
19.
J Mol Biol ; 430(6): 881-889, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29410316

ABSTRACT

Tyrosine kinases are enzymes playing a critical role in cellular signaling. Molecular dynamics umbrella sampling potential of mean force computations are used to quantify the impact of activating and inactivating mutations of c-Src kinase. The potential of mean force computations predict that a specific double mutant can stabilize c-Src kinase into an active-like conformation while disabling the binding of ATP in the catalytic active site. The active-like conformational equilibrium of this catalytically dead kinase is affected by a hydrophobic unit that connects to the hydrophobic spine network via the C-helix. The αC-helix plays a crucial role in integrating the hydrophobic residues, making it a hub for allosteric regulation of kinase activity and the active conformation. The computational free-energy landscapes reported here illustrate novel design principles focusing on the important role of the hydrophobic spines. The relative stability of the spines could be exploited in future efforts to artificially engineer active-like but catalytically dead forms of protein kinases.


Subject(s)
Mutation , Protein Conformation , src-Family Kinases/chemistry , src-Family Kinases/genetics , Adenosine Triphosphate/metabolism , Allosteric Regulation , Catalysis , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/genetics
20.
Metallomics ; 9(11): 1576-1584, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29043344

ABSTRACT

Protein kinases are key enzymes in the regulation of eukaryotic signal transduction. As metalloenzymes they employ divalent cations for catalysis and regulation. We used the catalytic (C) subunit of cAMP-dependent protein kinase (PKA) as a model protein to investigate the role of a variety of physiologically or pathophysiologically relevant divalent metal ions in distinct steps within the catalytic cycle. It is established that divalent metal ions play a crucial role in co-binding of nucleotides and also assist in catalysis. Our studies reveal that besides the physiologically highly relevant magnesium, metals like zinc and manganese can assist in phosphoryl transfer, however, only a few support efficient substrate turnover (turnover catalysis). Those trace metals allow for substrate binding and phosphotransfer but hamper product release. We further established the unique role of magnesium as the common biologically relevant divalent metal ideally enabling (co-) substrate binding and orientation. Magnesium allows stable substrate binding and, on the other hand accelerates product release, thus being extremely efficient in turnover catalysis. We extended our studies to non-catalytic functions of protein kinases looking at pseudokinases, a subfamily of protein kinases inherently lacking critical residues for catalysis. Recently, pseudokinases have been linked to human diseases. Some pseudokinases are still capable of binding metal ions, yet have lost the ability to transfer the phosphoryl group from ATP to a given substrate. Here metal ions stabilize an active like, though catalytically unproductive conformation and are therefore crucial to maintain non-catalytic function. Finally, we demonstrate for the canonical kinase PKA that the trace metal manganese alone can stabilize protein kinases in an active like conformation allowing them to bind substrates even in the absence of nucleotides.


Subject(s)
Cations, Divalent/pharmacology , Enzyme Assays/methods , Metals/pharmacology , Protein Kinases/metabolism , Biocatalysis/drug effects , Cadmium/pharmacology , Calcium/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Magnesium/pharmacology , Manganese/pharmacology , Nucleotides/metabolism , Protein Binding/drug effects , Substrate Specificity , Surface Plasmon Resonance , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...