Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Biomech Model Mechanobiol ; 18(1): 261-273, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30306291

ABSTRACT

Fibrillin-1 is an elastin-associated glycoprotein that contributes to the long-term fatigue resistance of elastic fibers as well as to the bioavailability of transforming growth factor-beta (TGFß) in arteries. Altered TGFß bioavailability and/or signaling have been implicated in aneurysm development in Marfan syndrome (MFS), a multi-system condition resulting from mutations to the gene that encodes fibrillin-1. We recently showed that the absence of the latent transforming growth factor-beta binding protein-3 (LTBP-3) in fibrillin-1-deficient mice attenuates the fragmentation of elastic fibers and focal dilatations that are characteristic of aortic root aneurysms in MFS mice, at least to 12 weeks of age. Here, we show further that the absence of LTBP-3 in this MFS mouse model improves the circumferential mechanical properties of the thoracic aorta, which appears to be fundamental in preventing or significantly delaying aneurysm development. Yet, a spinal deformity either remains or is exacerbated in the absence of LTBP-3 and seems to adversely affect the axial mechanical properties of the thoracic aorta, thus decreasing overall vascular function despite the absence of aneurysmal dilatation. Importantly, because of the smaller size of mice lacking LTBP-3, allometric scaling facilitates proper interpretation of aortic dimensions and thus the clinical phenotype. While this study demonstrates that LTBP-3/TGFß directly affects the biomechanical function of the thoracic aorta, it highlights that spinal deformities in MFS might indirectly and adversely affect the overall aortic phenotype. There is a need, therefore, to consider together the vascular and skeletal effects in this syndromic disease.


Subject(s)
Aorta/pathology , Aortic Aneurysm, Thoracic/pathology , Latent TGF-beta Binding Proteins/deficiency , Marfan Syndrome/pathology , Spinal Cord/pathology , Animals , Aorta/physiopathology , Aortic Aneurysm, Thoracic/physiopathology , Biomechanical Phenomena , Genotype , Latent TGF-beta Binding Proteins/metabolism , Male , Mice, Inbred C57BL , Phenotype , Spinal Cord/physiopathology
2.
J Biomech ; 49(12): 2383-2389, 2016 08 16.
Article in English | MEDLINE | ID: mdl-26755343

ABSTRACT

Marfan syndrome (MFS) is a multi-system connective tissue disorder that results from mutations to the gene that codes the elastin-associated glycoprotein fibrillin-1. Although elastic fibers are compromised throughout the arterial tree, the most severe phenotype manifests in the ascending aorta. By comparing biaxial mechanics of the ascending and descending thoracic aorta in a mouse model of MFS, we show that aneurysmal propensity correlates well with both a marked increase in circumferential material stiffness and an increase in intramural shear stress despite a near maintenance of circumferential stress. This finding is corroborated via a comparison of the present results with previously reported findings for both the carotid artery from the same mouse model of MFS and for the thoracic aorta from another model of elastin-associated glycoprotein deficiency that does not predispose to thoracic aortic aneurysms. We submit that the unique biaxial loading of the ascending thoracic aorta conspires with fibrillin-1 deficiency to render this aortic segment vulnerable to aneurysm and rupture.


Subject(s)
Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/complications , Aortic Aneurysm, Thoracic/physiopathology , Marfan Syndrome/complications , Mechanical Phenomena , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Disease Models, Animal , Elastic Tissue/metabolism , Elastin/metabolism , Fibrillin-1/metabolism , Humans , Male , Mice , Stress, Mechanical , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...