Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38138700

ABSTRACT

This investigation delved into the alterations in the mechanical properties of a TiZrHfMoCrCo high-entropy alloy due to phase transformations induced by high-pressure torsion (HPT). The alloy's genesis involved levitation melting within an argon atmosphere, presenting two distinct states for analysis: the initial, post-manufacturing state and the state subsequent to HPT treatment. The original alloy featured a composition comprising a singular A2 phase with a bcc lattice and two Laves phases, C15 and C14. The HPT process triggered significant phase modifications: a retention of one C15 Laves phase and decomposition of the bcc phase into two distinct phases exhibiting different bcc lattice parameters. The HPT-induced effect prominently manifests as strong grain refinement. However, scanning electron microscopy (SEM) observations unveiled persistent inhomogeneities at a micron scale both before and after HPT treatment. Thus, grain refinement occurs separately within each of the bcc and Laves phases, visible in the light, dark, and gray areas in SEM images, while mixing does not occur on the scale of several microns. The examination of Ti, Cr, Co, Zr, Mo, and Hf via X-ray absorption spectroscopy (EXAFS) at specific K-edges and L3-edge revealed that the HPT treatment conserves the local atomic environment of metal atoms, albeit with a slight elevation in static disorder. Assessments through microhardness and three-point bending tests demonstrated the material's inherent hardness and brittleness. The microhardness, standing at a substantial value of 600 HV, displayed negligible augmentation post-HPT. However, the microhardness of individual phases exhibited a notable alteration, nearly doubling in magnitude.

2.
Materials (Basel) ; 16(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005063

ABSTRACT

The pivotal role of metal implants within the host's body following reconstructive surgery hinges primarily on the initial phase of the process: the adhesion of host cells to the implant's surface and the subsequent colonization by these cells. Notably, titanium alloys represent a significant class of materials used for crafting metal implants. This study, however, marks the first investigation into how the phase composition of titanium alloys, encompassing the volume fractions of the α, ß, and ω phases, influences cell adhesion to the implant's surface. Moreover, the research delves into the examination of induced hemolysis and cytotoxicity. To manipulate the phase composition of titanium alloys, various parameters were altered, including the chemical composition of titanium alloys with iron and niobium, annealing temperature, and high-pressure torsion parameters. By systematically adjusting these experimental parameters, we were able to discern the distinct impact of phase composition. As a result, the study unveiled that the colonization of the surfaces of the examined Ti-Nb and Ti-Fe alloys by human multipotent mesenchymal stromal cells exhibits an upward trend with the increasing proportion of the ω phase, concurrently accompanied by a decrease in the α and ß phases. These findings signify a new avenue for advancing Ti-based alloys for both permanent implants and temporary fixtures, capitalizing on the ability to regulate the volume fractions of the α, ß, and ω phases. Furthermore, the promising characteristics of the ω phase suggest the potential emergence of a third generation of biocompatible Ti alloys, the ω-based materials, following the first-generation α-Ti alloys and second-generation ß alloys.

3.
Materials (Basel) ; 15(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744194

ABSTRACT

This paper discusses the features of ω-phase formation and its thermal stability depending on the phase composition, alloying element and the grain size of the initial microstructure of Ti-Nb and Ti-Mo alloys subjected to high-pressure torsion (HPT) deformation. In the case of two-phase Ti-3wt.% Nb and Ti-20wt.% Nb alloys with different volume fractions of α- and ß-phases, a complete ß→ω phase transformation and partial α→ω transformation were found. The dependence of the α→ω transformation on the concentration of the alloying element was determined: the greater content of Nb in the α-phase, the lower the amount of ω-phase that was formed from it. In the case of single-phase Ti-Mo alloys, it was found that the amount of ω-phase formed from the coarse-grained ß-phase of the Ti-18wt.% Mo alloy was less than the amount of the ω-phase formed from the fine α'-martensite of the Ti-2wt.% Mo alloy. This was despite the fact that the ω-phase is easier to form from the ß-phase than from the α- or α'-phase. It is possible that the grain size of the microstructure also affected the phase transformation, namely, the fine martensitic plates more easily gain deformation and overcome the critical shear stresses necessary for the phase transformation. It was also found that the thermal stability of the ω-phase in the Ti-Nb and Ti-Mo alloys increased with the increasing concentration of Nb or Mo.

4.
Materials (Basel) ; 14(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947101

ABSTRACT

In this review, the phenomenon of grain boundary (GB) wetting by the second solid phase is analyzed for the high entropy alloys (HEAs). Similar to the GB wetting by the liquid phase, the GB wetting by the second solid phase can be incomplete (partial) or complete. In the former case, the second solid phase forms in the GB of a matrix, the chain of (usually lenticular) precipitates with a certain non-zero contact angle. In the latter case, it forms in the GB continuous layers between matrix grains which completely separate the matrix crystallites. The GB wetting by the second solid phase can be observed in HEAs produced by all solidification-based technologies. The particle chains or continuous layers of a second solid phase form in GBs also without the mediation of a liquid phase, for example by solid-phase sintering or coatings deposition. To describe the GB wetting by the second solid phase, the new GB tie-lines should be considered in the two- or multiphase areas in the multicomponent phase diagrams for HEAs. The GB wetting by the second solid phase can be used to improve the properties of HEAs by applying the so-called grain boundary engineering methods.

5.
Microsc Microanal ; : 1-8, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34315557

ABSTRACT

This work presents the microstructure of the cross-section of a newly developed Nb/Inconel 601 weld with particular attention paid to the continuity, morphology of the interface, and the microstructural changes within its vicinity. Both scanning (SEM) and transmission (TEM) electron microscopy techniques are excellent tools to analyze the microstructure that affects both mechanical and corrosion resistance properties of the obtained product. Grain size examination and their orientation together with the character of grain boundaries by the electron backscattered diffraction (EBSD) technique were performed followed by chemical composition determination across the interface with energy-dispersive X-ray spectroscopy (EDS) in SEM. Then, the microstructure observations of the mixed region located at the Nb/Inconel 601 interface using the TEM technique allowed its chemical and phase composition to be revealed.

6.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925626

ABSTRACT

It is well known that severe plastic deformation not only leads to strong grain refinement and material strengthening but also can drive phase transformations. A study of the fundamentals of α → ω phase transformations induced by high-pressure torsion (HPT) in Ti-Nb-based alloys is presented in the current work. Before HPT, a Ti-3wt.%Nb alloy was annealed at two different temperatures in order to obtain the α-phase state with different amounts of niobium. X-ray diffraction analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for the characterisation of phase transitions and evolution of the microstructure. A small amount of the ß-phase was found in the initial states, which completely transformed into the ω-phase during the HPT process. During HPT, strong grain refinement in the α-phase took place, as did partial transformation of the α- into the ω-phase. Therefore, two kinds of ω-phase, each with different chemical composition, were obtained after HPT. The first one was formed from the ß-phase, enriched in Nb, and the second one from the α-phase. It was also found that the transformation of the α-phase into the ω-phase depended on the Nb concentration in the α-Ti phase. The less Nb there was in the α-phase, the more of the α-phase was transformed into the ω-phase.

7.
Materials (Basel) ; 12(18)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540357

ABSTRACT

The hard magnetic alloy FeCr30Co8 alloy was subjected to severe plastic deformation (SPD) by torsion combined with tension in the temperature range of 750 °C to 850 °C. This range of deformation temperatures corresponds to the α solid solution on the Fe-Cr-Co phase diagram. The study of the alloy after SPD by means of X-ray diffraction (XRD) and scanning and transmission electron microscopy techniques showed the formation of a gradient microstructure with fine grain size in the surface layer and precipitation of the hard intermetallic σ-phase. Next, the magnetic and mechanical properties of the deformed alloy after short annealing at 1000 °C and magnetic treatment were studied. A slight decrease in coercive force was found, along with a significant gain in plasticity and strength. The effective deformation temperature was determined to obtain the optimal magnetic and mechanical characteristics of the alloy. This method of deformation can be applied for the improvement of the mechanical properties of some magnets (high-speed rotors) which should have good magnetic properties within their volume while maintaining good mechanical properties on the surface.

8.
Materials (Basel) ; 12(3)2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30704123

ABSTRACT

The microstructure and properties of titanium-based alloys can be tailored using severe plastic deformation. The structure and microhardness of Ti⁻4 wt.% Co alloy have been studied after preliminary annealing and following high pressure torsion (HPT). The Ti⁻4 wt.% Co alloy has been annealed at 400, 500, and 600 °C, i.e., below the temperature of eutectoid transformation in the Ti⁻4 wt.% Co system. The amount of Co dissolved in α-Ti increased with increasing annealing temperature. HPT led to the transformation of α-Ti in ω-Ti. After HPT, the amount of ω-phase in the sample annealed at 400 °C was about 80-85%, i.e., higher than in pure titanium (about 40%). However, with increasing temperature of pre-annealing, the portion of ω-phase decreased (60⁻65% at 500 °C and about 5% at 600 °C). The microhardness of all investigated samples increased with increasing temperature of pre-annealing.

9.
Materials (Basel) ; 12(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717126

ABSTRACT

The aim of this work was to study the influence of severe plastic deformation (SPD) on the dissolution of silver particles in Cu⁻8wt.%Ag alloys. In order to obtain different morphologies of silver particles, samples were annealed at 400, 500 and 600 °C. Subsequently, the material was subjected to high pressure torsion (HPT) at room temperature. By means of scanning and transmission electron microscopy, as well as X-ray diffraction techniques, it was found that during SPD, the dissolution of second phase was strongly affected by the morphology and volume fraction of the precipitates in the initial state. Small, heterogeneous precipitates of irregular shape dissolved more easily than those of large size, round-shaped and uniform composition. It was also found that HPT led to the increase of solubility limit of silver in the copper matrix as the result of dissolution of the second phase. This unusual phase transition is discussed with respect to diffusion activation energy and mixing enthalpy of the alloying elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...