Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36366068

ABSTRACT

The use of small, interconnected and intelligent tools within the broad framework of pervasive computing for analysis and assessments in sport and physical activity is not a trend in itself but defines a way for information to be handled, processed and utilised: everywhere, at any time. The demand for objective data to support decision making prompted the adoption of wearables that evolve to fulfil the aims of assessing athletes and practitioners as closely as possible with their performance environments. In the present paper, we mention and discuss the advancements in ubiquitous computing in sports and physical activity in the past 5 years. Thus, recent developments in wearable sensors, cloud computing and artificial intelligence tools have been the pillars for a major change in the ways sport-related analyses are performed. The focus of our analysis is wearable technology, computer vision solutions for markerless tracking and their major contribution to the process of acquiring more representative data from uninhibited actions in realistic ecological conditions. We selected relevant literature on the applications of such approaches in various areas of sports and physical activity while outlining some limitations of the present-day data acquisition and data processing practices and the resulting sensors' functionalities, as well as the limitations to the data-driven informed decision making in the current technological and scientific framework. Finally, we hypothesise that a continuous merger of measurement, processing and analysis will lead to the development of more reliable models utilising the advantages of open computing and unrestricted data access and allow for the development of personalised-medicine-type approaches to sport training and performance.


Subject(s)
Sports , Wearable Electronic Devices , Humans , Artificial Intelligence , Exercise , Athletes
2.
J Sports Sci Med ; 18(4): 604-614, 2019 12.
Article in English | MEDLINE | ID: mdl-31827344

ABSTRACT

A systematic literature search was conducted to review the force-enhancing mechanisms caused by a stretch-shortening cycle (SSC). The review aims to yield an overview of the contraction modalities influencing the SSC performance in animals and single joint movements in humans. The search was executed in common with the PRISMA statement. CINAHL, MEDLINE (via ProQuest), PubMed, ScienceDirect, Scopus and Web of Science databases were used for the systematic search from its inception until February 2019. A quality assessment was conducted with a modified Downs and Black checklist. Twenty-five studies were included. SSC effects, leading to increased force/work during a SSC and a reduced force depression (FD) compared to a pure shortening contraction, are existent on different levels of the muscle, from single fiber experiments to the level of in vivo muscle-tendon complex. Muscle performance is dependent on shortening velocity, shortening distance, stretch distance, the time (transition phase) between stretch and shortening and the active prephase duration. Concerning stretch velocity we found conflicting results. The findings from this systematic review indicate that the mechanisms in the early phase of shortening are associated with pre-activation effects, elastic recoil and stretch reflex. Furthermore, we speculate that residual force enhancement (RFE) is mainly responsible for an increased steady-state force compared to a pure shortening contraction.


Subject(s)
Joints/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Humans , Movement/physiology , Torque
3.
J Sports Sci ; 30(14): 1503-11, 2012.
Article in English | MEDLINE | ID: mdl-22906154

ABSTRACT

This study investigates the accuracy of the tracking system LPM (local position measurement). The goal was to determine detailed error values of the system in the context of sports performance analyses. Six moderately trained male soccer players (amateur level) performed 276 runs on three different courses at six different speeds. Additionally, ten small-sided game plays were carried out. All runs and game plays were recorded with the LPM tracking system and the motion capture system VICON simultaneously. VICON served as the reference system. The absolute error of all LPM position estimations was on average 23.4±20.7 cm. The estimation for average velocities varied between 0.01 km h(-1) and 0.23 km h(-1), the maximum speed estimations differed by up to 2.71 km h(-1). In addition, the results showed that the accuracy of the LPM system is highly dependent on the instantaneous dynamics of the player and decreases in the margins of the observation field. These dependencies were quantified. Considering commonly used applications of position tracking systems in sports (Leser, Ogris, & Baca, 2011), the accuracy of LPM is acceptable for position and velocity estimations. The system provides valuable results for average velocities but seems to be far less reliable when dealing with high dynamic movements and measuring instantaneous velocities.


Subject(s)
Computer Systems , Movement , Running , Soccer , Task Performance and Analysis , Adolescent , Adult , Athletic Performance , Humans , Male , Reproducibility of Results , Young Adult
4.
Hum Mov Sci ; 31(2): 295-302, 2012 Apr.
Article in English | MEDLINE | ID: mdl-20675002

ABSTRACT

The aim of this study was to analyze the stability of the aiming process of elite biathlon athletes. Nine elite athletes performed four series of five shots onto the same target and onto targets next to each other in a shooting hall. A video-based system reconstructed the horizontal and vertical motion of the muzzle. The time period starting after repeating the rifle and ending with the shot was divided in 10 intervals of equal duration. Eight kinematic parameters describing the motion in these intervals were calculated. Based on the parameter values obtained a special variant of an artificial network of type SOM (self-organizing map) was trained. Similar neurons were combined to clusters. For each shot the 10 data sets describing the aiming process were then mapped to the corresponding neurons. The sequence of the related clusters in the respective succession was used as representation of the complex aiming motion. In a second processing step types of shots were identified applying a second net. A more stable pattern could be inferred for the members of the national squad compared to the biathletes classified in the next best performance level. Only small differences between the two shooting conditions could be observed.


Subject(s)
Athletic Performance , Firearms , Image Interpretation, Computer-Assisted , Neural Networks, Computer , Skiing , Sports , Video Recording , Acceleration , Austria , Biomechanical Phenomena , Computer Graphics , Humans , Motor Skills , Orientation
5.
Sensors (Basel) ; 10(12): 10640-62, 2010.
Article in English | MEDLINE | ID: mdl-22163490

ABSTRACT

A prototype system for monitoring, transmitting and processing performance data in sports for the purpose of providing feedback has been developed. During training, athletes are equipped with a mobile device and wireless sensors using the ANT protocol in order to acquire biomechanical, physiological and other sports specific parameters. The measured data is buffered locally and forwarded via the Internet to a server. The server provides experts (coaches, biomechanists, sports medicine specialists etc.) with remote data access, analysis and (partly automated) feedback routines. In this way, experts are able to analyze the athlete's performance and return individual feedback messages from remote locations.


Subject(s)
Internet , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Physical Education and Training/methods , Sports , Telemedicine/methods , Athletes , Athletic Performance/physiology , Feedback , Humans , Mentors , Models, Biological , Sports/physiology , Sports Equipment , Sports Medicine , Telemedicine/instrumentation , Wireless Technology
6.
J Sports Sci ; 27(12): 1335-46, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19764000

ABSTRACT

Ubiquitous (pervasive) computing is a term for a synergetic use of sensing, communication and computing. Pervasive use of computing has seen a rapid increase in the current decade. This development has propagated in applied sport science and everyday life. The work presents a survey of recent developments in sport and leisure with emphasis on technology and computational techniques. A detailed analysis on new technological developments is performed. Sensors for position and motion detection, and such for equipment and physiological monitoring are discussed. Aspects of novel trends in communication technologies and data processing are outlined. Computational advancements have started a new trend - development of smart and intelligent systems for a wide range of applications - from model-based posture recognition to context awareness algorithms for nutrition monitoring. Examples particular to coaching and training are discussed. Selected tools for monitoring rules' compliance and automatic decision-making are outlined. Finally, applications in leisure and entertainment are presented, from systems supporting physical activity to systems providing motivation. It is concluded that the emphasis in future will shift from technologies to intelligent systems that allow for enhanced social interaction as efforts need to be made to improve user-friendliness and standardisation of measurement and transmission protocols.


Subject(s)
Computers , Computing Methodologies , Monitoring, Physiologic/instrumentation , Research/instrumentation , Sports , Task Performance and Analysis , Biomechanical Phenomena , Computer Simulation , Exercise , Humans , Leisure Activities , Monitoring, Ambulatory/instrumentation , Movement , Time and Motion Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...