Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684889

ABSTRACT

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Subject(s)
Adenylyl Cyclases , Adipose Tissue, Brown , Cold Temperature , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Adipose Tissue, Brown/metabolism , Animals , Mice , Male , Humans , Thermogenesis/genetics , Energy Metabolism , Cyclic AMP/metabolism , Mice, Knockout
2.
iScience ; 26(8): 107190, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37564700

ABSTRACT

Alternative transcription increases transcriptome complexity by expression of multiple transcripts per gene. Annotation and quantification of transcripts using short-read sequencing is non-trivial. Long-read sequencing aims at overcoming these problems by sequencing full-length transcripts. Activation of brown adipose tissue (BAT) thermogenesis involves major transcriptomic remodeling and positively affects metabolism via increased energy expenditure. We benchmark Oxford Nanopore Technology (ONT) long-read sequencing protocols to Illumina short-read sequencing assessing alignment characteristics, gene and transcript detection and quantification, differential gene and transcript expression, transcriptome reannotation, and differential transcript usage (DTU). We find ONT sequencing is superior to Illumina for transcriptome reassembly, reducing the risk of false-positive events by unambiguously mapping reads to transcripts. We identified novel isoforms of genes undergoing DTU in cold-activated BAT including Cars2, Adtrp, Acsl5, Scp2, Aldoa, and Pde4d, validated by real-time PCR. The reannotated murine BAT transcriptome established here provides a framework for future investigations into the regulation of BAT.

3.
Noncoding RNA ; 8(3)2022 May 06.
Article in English | MEDLINE | ID: mdl-35645339

ABSTRACT

Cold and nutrient-activated brown adipose tissue (BAT) is capable of increasing systemic energy expenditure via the uncoupled respiration and secretion of endocrine factors, thereby protecting mice against diet-induced obesity and improving insulin response and glucose tolerance in men. Long non-coding RNAs (lncRNAs) have recently been identified as fine-tuning regulators of cellular function. While certain lncRNAs have been functionally characterised in adipose tissue, their overall contribution in the activation of BAT remains elusive. We identified lncRNAs correlating to interscapular brown adipose tissue (iBAT) function in a high fat diet (HFD) and cold stressed mice. We focused on Gm15551, which has an adipose tissue specific expression profile, is highly upregulated during adipogenesis, and downregulated by ß-adrenergic activation in mature adipocytes. Although we performed comprehensive transcriptional and adipocyte physiology profiling in vitro and in vivo, we could not detect an effect of gain or loss of function of Gm15551.

5.
Sci Rep ; 11(1): 2391, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504837

ABSTRACT

Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.


Subject(s)
Cell Differentiation/drug effects , Diamines/pharmacology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Cell Survival/drug effects , Diamines/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Myocytes, Cardiac/cytology , Oxygen Consumption/drug effects , Teratoma/drug therapy , Teratoma/etiology , Teratoma/pathology
6.
Proc Natl Acad Sci U S A ; 117(38): 23932-23941, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900951

ABSTRACT

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.


Subject(s)
Adipose Tissue/metabolism , DEAD-box RNA Helicases/metabolism , Exercise/physiology , Ribonuclease III/metabolism , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological/physiology , Adipocytes/metabolism , Animals , Cells, Cultured , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Female , Glycolysis , Humans , Male , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Physical Conditioning, Animal , Ribonuclease III/deficiency , Ribonuclease III/genetics
7.
Nat Commun ; 11(1): 644, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005828

ABSTRACT

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Liver/metabolism , MafG Transcription Factor/genetics , Obesity/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , MafG Transcription Factor/metabolism , Male , Mice , Middle Aged , Obesity/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Stem Cell Reports ; 14(2): 201-209, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31983656

ABSTRACT

Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated ß-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging.


Subject(s)
Cellular Senescence , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Metabolomics , Aged , Cells, Cultured , Cellular Senescence/genetics , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Metabolic Networks and Pathways , Metabolome/genetics , Middle Aged , Phenotype
9.
Noncoding RNA ; 5(1)2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30678101

ABSTRACT

In recent years, long noncoding RNAs (lncRNAs) have emerged as multifaceted regulators of gene expression, controlling key developmental and disease pathogenesis processes. However, due to the paucity of lncRNA loss-of-function mouse models, key questions regarding the involvement of lncRNAs in organism homeostasis and (patho)-physiology remain difficult to address experimentally in vivo. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 platform provides a powerful genome-editing tool and has been successfully applied across model organisms to facilitate targeted genetic mutations, including Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Mus musculus. However, just a few lncRNA-deficient mouse lines have been created using CRISPR/Cas9-mediated genome engineering, presumably due to the need for lncRNA-specific gene targeting strategies considering the absence of open-reading frames in these loci. Here, we describe a step-wise procedure for the generation and validation of lncRNA loss-of-function mouse models using CRISPR/Cas9-mediated genome engineering. In a proof-of-principle approach, we generated mice deficient for the liver-enriched lncRNA Gm15441, which we found downregulated during development of metabolic disease and induced during the feeding/fasting transition. Further, we discuss guidelines for the selection of lncRNA targets and provide protocols for in vitro single guide RNA (sgRNA) validation, assessment of in vivo gene-targeting efficiency and knockout confirmation. The procedure from target selection to validation of lncRNA knockout mouse lines can be completed in 18⁻20 weeks, of which <10 days hands-on working time is required.

10.
BMC Genomics ; 20(1): 85, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30678634

ABSTRACT

BACKGROUND: Next-Generation Sequencing (NGS) has been widely accepted as an essential tool in molecular biology. Reduced costs and automated analysis pipelines make the use of NGS data feasible even for small labs, yet the methods for interpreting the data are not sophisticated enough to account for the amount of information. RESULTS: We propose s ·nr, a Visual Analytics tool that provides simple yet powerful visual interfaces for displaying and querying NGS data. It allows researchers to explore their own data in the context of experimental data deposited in public repositories, as well as to extract specific data sets with similar gene expression signatures. We tested s ·nr on 1543 RNA-Seq based mouse differential expression profiles derived from the public ArrayExpress platform. We provide the repository of processed data with this paper. CONCLUSION: s ·nr, easily deployable utilizing its containerized implementation, empowers researchers to analyze and relate their own RNA-Seq as well as to provide interactive and contextual crosstalk with data from public repositories. This allows users to deduce novel and unbiased hypotheses about the underlying molecular processes. DEMO: Login demo/demo: snr.sf.mpg.de (Tested with Google Chrome).


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Software , Animals , Computer Graphics , Mice , User-Computer Interface
11.
Nat Commun ; 9(1): 3622, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190464

ABSTRACT

Increasing brown adipose tissue (BAT) thermogenesis in mice and humans improves metabolic health and understanding BAT function is of interest for novel approaches to counteract obesity. The role of long noncoding RNAs (lncRNAs) in these processes remains elusive. We observed maternally expressed, imprinted lncRNA H19 increased upon cold-activation and decreased in obesity in BAT. Inverse correlations of H19 with BMI were also observed in humans. H19 overexpression promoted, while silencing of H19 impaired adipogenesis, oxidative metabolism and mitochondrial respiration in brown but not white adipocytes. In vivo, H19 overexpression protected against DIO, improved insulin sensitivity and mitochondrial biogenesis, whereas fat H19 loss sensitized towards HFD weight gains. Strikingly, paternally expressed genes (PEG) were largely absent from BAT and we demonstrated that H19 recruits PEG-inactivating H19-MBD1 complexes and acts as BAT-selective PEG gatekeeper. This has implications for our understanding how monoallelic gene expression affects metabolism in rodents and, potentially, humans.


Subject(s)
Adipose Tissue, Brown/physiology , Genomic Imprinting , Obesity/genetics , RNA, Long Noncoding/genetics , Adipose Tissue, Brown/pathology , Adipose Tissue, White/physiology , Adult , Aged , Aged, 80 and over , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Female , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Obesity/etiology
12.
Nat Med ; 23(12): 1466-1473, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29106399

ABSTRACT

Over 40% of microRNAs (miRNAs) are located in introns of protein-coding genes, and many of these intronic miRNAs are co-regulated with their host genes. In such cases of co-regulation, the products of host genes and their intronic miRNAs can cooperate to coordinately regulate biologically important pathways. Therefore, we screened intronic miRNAs dysregulated in the livers of mouse models of obesity to identify previously uncharacterized protein-coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach revealed that expression of both the gene encoding ectodysplasin A (Eda), the causal gene in X-linked hypohidrotic ectodermal dysplasia (XLHED), and its intronic miRNA, miR-676, was increased in the livers of obese mice. Moreover, hepatic EDA expression is increased in obese human subjects and reduced upon weight loss, and its hepatic expression correlates with systemic insulin resistance. We also found that reducing miR-676 expression in db/db mice increases the expression of proteins involved in fatty acid oxidation and reduces the expression of inflammatory signaling components in the liver. Further, we found that Eda expression in mouse liver is controlled via PPARγ and RXR-α, increases in circulation under conditions of obesity, and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. In accordance with these findings, gain- and loss-of-function approaches reveal that liver-derived EDA regulates systemic glucose metabolism, suggesting that EDA is a hepatokine that can contribute to impaired skeletal muscle insulin sensitivity in obesity.


Subject(s)
Ectodysplasins/genetics , Insulin Resistance/genetics , Liver/metabolism , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Obesity/genetics , Animals , Cells, Cultured , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/metabolism , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Obese , Mice, Transgenic , Obesity/metabolism
13.
Cell Rep ; 17(4): 1008-1021, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760309

ABSTRACT

Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.


Subject(s)
Adipose Tissue, Brown/metabolism , Gene Deletion , Histone Demethylases/metabolism , Adipose Tissue, White/metabolism , Animals , Gene Expression Regulation , Glucose/metabolism , Glycolysis/genetics , Lipid Metabolism/genetics , Mice, Knockout , Models, Biological , Oxidation-Reduction , Weight Gain
14.
Pflugers Arch ; 468(6): 959-69, 2016 06.
Article in English | MEDLINE | ID: mdl-26957289

ABSTRACT

The concept of epigenetic transgenerational inheritance (ETI) posits that lifetime experiences in parents, particularly fathers, alter the phenotypic trajectory of their progeny independently of Mendelian genetics. Based on evidence from population studies and laboratory-controlled studies in syngenic animals, this long-term discredited so-called Lamarckian inheritance gained prominent attention. This article aims to summarize the current knowledge about ETI in lower and in higher organisms as well as in human cohorts and elaborates on epigenetic principles potentially underlying this nongenetic mode of heredity. Special attention is given to-small and long-noncoding RNAs in male gametes that recently emerged as a molecular sensor of organismal metabolic states which can ultimately relay information across the germline barrier by translating environmental cues into (epigenetic) changes in zygotic gene expression.


Subject(s)
Genomic Imprinting , RNA, Long Noncoding/genetics , Animals , Female , Germ Cells/metabolism , Humans , Male , Phenotype
15.
Nat Cell Biol ; 18(3): 328-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26900752

ABSTRACT

Activation of brown adipose tissue (BAT) controls energy homeostasis in rodents and humans and has emerged as an innovative strategy for the treatment of obesity and type 2 diabetes mellitus. Here we show that ageing- and obesity-associated dysfunction of brown fat coincides with global microRNA downregulation due to reduced expression of the microRNA-processing node Dicer1. Consequently, heterozygosity of Dicer1 in BAT aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose metabolism. Analyses of differential microRNA expression during preadipocyte commitment and mouse models of progeria, longevity and DIO identified miR-328 as a regulator of BAT differentiation. Reducing miR-328 blocked preadipocyte commitment, whereas miR-328 overexpression instigated BAT differentiation and impaired muscle progenitor commitment-partly through silencing of the ß-secretase Bace1. Loss of Bace1 enhanced brown preadipocyte specification in vitro and was overexpressed in BAT of obese and progeroid mice. In vivo Bace1 inhibition delayed DIO-induced weight gain and improved glucose tolerance and insulin sensitivity. These experiments reveal Dicer1-miR-328-Bace1 signalling as a determinant of BAT function, and highlight the potential of Bace1 inhibition as a therapeutic approach to improve not only neurodegenerative diseases but also ageing- and obesity-associated impairments of BAT function.


Subject(s)
Adipose Tissue, Brown/metabolism , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Cell Differentiation/physiology , DEAD-box RNA Helicases/genetics , MicroRNAs/genetics , Ribonuclease III/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , DEAD-box RNA Helicases/metabolism , Energy Metabolism/physiology , Homeostasis/physiology , Insulin Resistance/physiology , Mice, Inbred C57BL , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , Ribonuclease III/metabolism
16.
Cell Metab ; 20(4): 678-86, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25295788

ABSTRACT

Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.


Subject(s)
Ceramides/metabolism , Glucose Intolerance , Sphingosine N-Acyltransferase/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Mass Index , Diet, High-Fat , Female , Humans , Lipid Peroxidation , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/metabolism , Obesity/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Sphingosine N-Acyltransferase/deficiency , Sphingosine N-Acyltransferase/genetics , Weight Gain
17.
Front Genet ; 5: 57, 2014.
Article in English | MEDLINE | ID: mdl-24723937

ABSTRACT

Our understanding of genomic regulation was revolutionized by the discovery that the genome is pervasively transcribed, giving rise to thousands of mostly uncharacterized non-coding ribonucleic acids (ncRNAs). Long, ncRNAs (lncRNAs) have thus emerged as a novel class of functional RNAs that impinge on gene regulation by a broad spectrum of mechanisms such as the recruitment of epigenetic modifier proteins, control of mRNA decay and DNA sequestration of transcription factors. We review those lncRNAs that are implicated in differentiation and homeostasis of metabolic tissues and present novel concepts on how lncRNAs might act on energy and glucose homeostasis. Finally, the control of circadian rhythm by lncRNAs is an emerging principles of lncRNA-mediated gene regulation.

18.
Nature ; 494(7435): 111-5, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23389544

ABSTRACT

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Subject(s)
Gene Silencing , Glucose/metabolism , Hepatocyte Nuclear Factor 1-beta/deficiency , MicroRNAs/genetics , Obesity/genetics , Animals , Gene Expression Regulation , Gluconeogenesis , Glucose/biosynthesis , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Humans , Insulin/metabolism , Insulin Resistance/genetics , Liver/metabolism , Mice , MicroRNAs/biosynthesis , Signal Transduction
19.
Nat Cell Biol ; 14(12): 1248-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23196844

ABSTRACT

Brown adipose tissue is intensively researched owing to its role in regulating energy and glucose homeostasis. Its differentiation is controlled through adrenergic-dependent regulation of the transcriptional co-regulator Prdm16. Adrenergic stimulation inhibits expression of miR-133a/b in a Mef2c-dependent manner to abrogate post-transcriptional silencing of Prdm16.


Subject(s)
Adipocytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , DNA-Binding Proteins/metabolism , MicroRNAs/metabolism , Transcription Factors/metabolism , Animals , Humans , Male
20.
Mol Cell Endocrinol ; 361(1-2): 1-11, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22564914

ABSTRACT

Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.


Subject(s)
Fatty Liver/metabolism , Growth Hormone/metabolism , Growth and Development , Liver Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...