Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Digit Biomark ; 4(Suppl 1): 100-118, 2020.
Article in English | MEDLINE | ID: mdl-33442584

ABSTRACT

INTRODUCTION: Future digital health research hinges on methodologies to conduct remote clinical assessments and in-home monitoring. The Collaborative Aging Research Using Technology (CART) initiative was introduced to establish a digital technology research platform that could widely assess activity in the homes of diverse cohorts of older adults and detect meaningful change longitudinally. This paper reports on the built end-to-end design of the CART platform, its functionality, and the resulting research capabilities. METHODS: CART platform development followed a principled design process aiming for scalability, use case flexibility, longevity, and data privacy protection while allowing sharability. The platform, comprising ambient technology, wearables, and other sensors, was deployed in participants' homes to provide continuous, long-term (months to years), and ecologically valid data. Data gathered from CART homes were sent securely to a research server for analysis and future data sharing. RESULTS: The CART system was created, iteratively tested, and deployed to 232 homes representing four diverse cohorts (African American, Latinx, low-income, and predominantly rural-residing veterans) of older adults (n = 301) across the USA. Multiple measurements of wellness such as cognition (e.g., mean daily computer use time = 160-169 min), physical mobility (e.g., mean daily transitions between rooms = 96-155), sleep (e.g., mean nightly sleep duration = 6.3-7.4 h), and level of social engagement (e.g., reports of overnight visitors = 15-45%) were collected across cohorts. CONCLUSION: The CART initiative resulted in a minimally obtrusive digital health-enabled system that met the design principles while allowing for data capture over extended periods and can be widely used by the research community. The ability to monitor and manage health digitally within the homes of older adults is an important alternative to in-person assessments in many research contexts. Further advances will come with wider, shared use of the CART system in additional settings, within different disease contexts, and by diverse research teams.

2.
PLoS One ; 10(9): e0138095, 2015.
Article in English | MEDLINE | ID: mdl-26379170

ABSTRACT

BACKGROUND: Trials in Alzheimer's disease are increasingly focusing on prevention in asymptomatic individuals. This poses a challenge in examining treatment effects since currently available approaches are often unable to detect cognitive and functional changes among asymptomatic individuals. Resultant small effect sizes require large sample sizes using biomarkers or secondary measures for randomized controlled trials (RCTs). Better assessment approaches and outcomes capable of capturing subtle changes during asymptomatic disease stages are needed. OBJECTIVE: We aimed to develop a new approach to track changes in functional outcomes by using individual-specific distributions (as opposed to group-norms) of unobtrusive continuously monitored in-home data. Our objective was to compare sample sizes required to achieve sufficient power to detect prevention trial effects in trajectories of outcomes in two scenarios: (1) annually assessed neuropsychological test scores (a conventional approach), and (2) the likelihood of having subject-specific low performance thresholds, both modeled as a function of time. METHODS: One hundred nineteen cognitively intact subjects were enrolled and followed over 3 years in the Intelligent Systems for Assessing Aging Change (ISAAC) study. Using the difference in empirically identified time slopes between those who remained cognitively intact during follow-up (normal control, NC) and those who transitioned to mild cognitive impairment (MCI), we estimated comparative sample sizes required to achieve up to 80% statistical power over a range of effect sizes for detecting reductions in the difference in time slopes between NC and MCI incidence before transition. RESULTS: Sample size estimates indicated approximately 2000 subjects with a follow-up duration of 4 years would be needed to achieve a 30% effect size when the outcome is an annually assessed memory test score. When the outcome is likelihood of low walking speed defined using the individual-specific distributions of walking speed collected at baseline, 262 subjects are required. Similarly for computer use, 26 subjects are required. CONCLUSIONS: Individual-specific thresholds of low functional performance based on high-frequency in-home monitoring data distinguish trajectories of MCI from NC and could substantially reduce sample sizes needed in dementia prevention RCTs.


Subject(s)
Alzheimer Disease/diagnosis , Clinical Trials as Topic/methods , Cognitive Dysfunction/physiopathology , Monitoring, Ambulatory/methods , Neuropsychological Tests/statistics & numerical data , Aged, 80 and over , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/metabolism , Biomarkers/analysis , Cognitive Dysfunction/diagnosis , Disease Progression , Female , Humans , Male , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...