Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38931818

ABSTRACT

Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs.

2.
Int J Biol Macromol ; 252: 126345, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37619685

ABSTRACT

Low-density lipoprotein (LDL) plays a crucial role in cholesterol metabolism. Responsible for cholesterol transport from the liver to the organs, LDL accumulation in the arteries is a primary cause of cardiovascular diseases, such as atherosclerosis. This work focuses on the fundamental question of the LDL molecular structure, as well as the topology and molecular motions of apolipoprotein B-100 (apo B-100), which is addressed by single-particle cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM). Our results suggest a revised model of the LDL core organization with respect to the cholesterol ester (CE) arrangement. In addition, a high-density region close to the flattened poles could be identified, likely enriched in free cholesterol. The most remarkable new details are two protrusions on the LDL surface, attributed to the protein apo B-100. HS-AFM adds the dimension of time and reveals for the first time a highly dynamic direct description of LDL, where we could follow large domain fluctuations of the protrusions in real time. To tackle the inherent flexibility and heterogeneity of LDL, the cryo-EM maps are further assessed by 3D variability analysis. Our study gives a detailed explanation how to approach the intrinsic flexibility of a complex system comprising lipids and protein.


Subject(s)
Cholesterol , Lipoproteins, LDL , Lipoproteins, LDL/metabolism , Cryoelectron Microscopy , Apolipoprotein B-100 , Microscopy, Atomic Force/methods
3.
Pharmaceutics ; 15(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514169

ABSTRACT

Obesity and type 2 diabetes are major health burdens for which no effective therapy is available today. One treatment strategy could be to balance the metabolic functions of adipose tissue by regulating gene expressions using miRNAs. Here, we have loaded two anti-adipogenic miRNAs (miR26a and miR27a) into a pegylated lipid nanoparticle (PEG-LNP) formulation by a single-step microfluidic-assisted synthesis step. For the miRNA-loaded LNPs, the following system properties were determined: particle size, zeta potential, miRNA complexation efficiency, and cytotoxicity. We have used a human preadipocyte cell line to address the transfection efficiency and biological effects of the miRNA candidates at the gene and protein level. Our findings revealed that the upregulation of miR27a in preadipocytes inhibits adipogenesis by the downregulation of PPARγ and the reduction of lipid droplet formation. In contrast, miR26a transfection in adipocytes induced white adipocyte browning detected as the upregulation of uncoupling protein 1 (UCP1) as a marker of non-shivering thermogenesis. We conclude that the selective delivery of miRNAs by PEG-LNPs to adipocytes could offer new perspectives for the treatment of obesity and related metabolic diseases.

4.
Pharmaceutics ; 14(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35456640

ABSTRACT

This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery.

5.
Adv Drug Deliv Rev ; 181: 114110, 2022 02.
Article in English | MEDLINE | ID: mdl-34995679

ABSTRACT

Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Drug Delivery Systems/methods , Metabolic Diseases/physiopathology , MicroRNAs/pharmacology , Adipocytes/metabolism , Diabetes Mellitus, Type 2/physiopathology , Humans , Insulin Resistance/physiology , Lipid Metabolism/physiology , MicroRNAs/administration & dosage
6.
Adv Mater Technol ; 7(9): 2101159, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37064760

ABSTRACT

Nongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K+ channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light. The electrophysiological recordings show that millisecond light stimulation of OEPC shifts conductance-voltage plots of voltage-gated K+ channels by ≈30 mV. Models are described both for understanding the experimental findings at the level of K+ channel kinetics in HEK cells, as well as elucidating interpretation of membrane electrophysiology obtained during stimulation with an electrically floating extracellular photoelectrode. A time-dependent increase in voltage-gated channel conductivity in response to OEPC stimulation is demonstrated. These findings are then carried on to cultured primary hippocampal neurons. It is found that millisecond time-scale optical stimuli trigger repetitive action potentials in these neurons. The findings demonstrate that OEPC devices enable the manipulation of neuronal signaling activities with millisecond precision. OEPCs can therefore be integrated into novel in vitro electrophysiology protocols, and the findings can inspire in vivo applications.

7.
J Phys Chem Lett ; 12(51): 12402-12410, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34939807

ABSTRACT

Apolipoprotein B-100 (apo B-100) is the protein moiety of both low- and very-low-density lipoproteins, whose role is crucial to cholesterol and triglyceride transport. Aiming at the molecular dynamics' details of apo B-100, scarcely studied, we performed elastic and quasi-elastic incoherent neutron scattering (EINS, QENS) experiments combining different instruments and time scales. Similar to classical membrane proteins, the solubilization results in remaining detergent, here Nonidet P-40 (NP40). Therefore, we propose a framework for QENS studies of protein-detergent complexes, with the introduction of a combined model, including the experimental apo B-100/NP40 ratio. Relying on the simultaneous analysis of all QENS amplitudes, this approach is sensitive enough to separate both contributions. Its application identified two points: (i) apo B-100 slow dynamics and (ii) the acceleration of NP40 dynamics in the presence of apo B-100. Direct translation of the exposed methodology now makes the investigation of more membrane proteins by neutron spectroscopy achievable.


Subject(s)
Apolipoprotein B-100/chemistry , Detergents/chemistry , Molecular Dynamics Simulation , Humans , Neutrons , Scattering, Small Angle
8.
Cancer Lett ; 469: 266-276, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31697978

ABSTRACT

Lung cancer is one of the deadliest cancers worldwide. Late diagnosis at an advanced, inoperable stage makes chemotherapy a treatment of choice, yet, with low response rates. The hedgehog signaling pathway (HHSP) is often reactivated in cancer. We identified miR-182-5p as a regulator of GLI2, a transcriptional regulator of the HHSP, and explored the role of the miR-182-5p/GLI2 axis in carcinogenesis and cisplatin resistance of lung adenocarcinoma (LADC). Expression of miRNAs and target genes was analyzed by RT-qPCR, expression of the GLI-protein family in LADC and adjacent lung tissue (n = 27 pairs) by immunohistochemistry. MiR-182-5p was manipulated, and data were generated by immunoblotting, immunofluorescence, apoptosis, proliferation/viability, dual-luciferase-, and colony forming assays. MiR-182-5p was down-regulated in cisplatin-resistant LADC cells and directly targeted GLI2. Interference with miR-182-5p or GLI2 silencing resulted in modulation of cell proliferation, clonogenic potential, and cisplatin-sensitivity. HHSP was markedly reactivated in LADC tissue compared to adjacent non-malignant lung tissue. Our results indicate that the miR-182-5p/GLI2 axis modulates tumorigenesis and cisplatin-resistance in LADC cells, by influencing the HHSP. Therefore, this axis might be considered as a potential biomarker and future therapeutic target in LADC patients.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Cisplatin/pharmacology , MicroRNAs/genetics , Nuclear Proteins/genetics , Zinc Finger Protein Gli2/genetics , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Apoptosis/drug effects , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cisplatin/adverse effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/genetics , Humans , Male , Middle Aged , Signal Transduction/drug effects
9.
Int J Nanomedicine ; 14: 7795-7808, 2019.
Article in English | MEDLINE | ID: mdl-31576124

ABSTRACT

BACKGROUND: Endogenously expressed microRNAs (miRNAs) have attracted attention as important regulators in post-transcriptionally controlling gene expression of various physiological processes. As miRNA dysregulation is often associated with various disease patterns, such as obesity, miRNA-27a might therefore be a promising candidate for miRNA mimic replacement therapy by inhibiting adipogenic marker genes. However, application of naked nucleic acids faces some limitations concerning poor enzymatic stability, bio-membrane permeation and cellular uptake. To overcome these obstacles, the development of appropriate drug delivery systems (DDS) for miRNAs is of paramount importance. METHODS: In this work, a triple combination of atomic force microscopy (AFM), brightfield (BF) and fluorescence microscopy was used to trace the cellular adhesion of N-TER peptide-nucleic acid complexes followed by time-dependent uptake studies using confocal laser scanning microscopy (cLSM). To reveal the biological effect of miRNA-27a on adipocyte development after transfection treatment, Oil-Red-O (ORO)- staining was performed to estimate the degree of in lipid droplets accumulated ORO in mature adipocytes by using light microscopy images as well as absorbance measurements. RESULTS: The present findings demonstrated that amphipathic N-TER peptides represent a suitable DDS for miRNAs by promoting non-covalent complexation through electrostatic interactions between both components as well as cellular adhesion of the N-TER peptide - nucleic acid complexes followed by uptake across cell membranes and intracellular release of miRNAs. The anti-adipogenic effect of miRNA-27a in 3T3-L1 cells could be detected in mature adipocytes by reduced lipid droplet formation. CONCLUSION: The present DDS assembled from amphipathic N-TER peptides and miRNAs is capable of inducing the anti-adipogenic effect of miRNA-27a by reducing lipid droplet accumulation in mature adipocytes. With respect to miRNA mimic replacement therapies, this approach might provide new therapeutic strategies to prevent or treat obesity and obesity-related disorders.


Subject(s)
Drug Delivery Systems , MicroRNAs/metabolism , Peptides/chemistry , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis , Amino Acid Sequence , Animals , Cell Adhesion , Lipid Droplets/metabolism , Mice , MicroRNAs/genetics , Peptide Nucleic Acids/chemistry , Transfection
10.
Molecules ; 24(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382521

ABSTRACT

Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.


Subject(s)
Cardiovascular System/metabolism , Lipoproteins, HDL , Nanoparticles , Research , Animals , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Biomimetic Materials/chemistry , Biomimetics/methods , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Chemical Phenomena , Disease Susceptibility , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Lipoproteins/metabolism , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Nanoparticles/chemistry , Peptides/chemistry , Peptides/metabolism , Theranostic Nanomedicine
11.
Part Part Syst Charact ; 35(9)2018 Sep.
Article in English | MEDLINE | ID: mdl-30283212

ABSTRACT

Low-density lipoproteins (LDL) are natural lipid transporter in human plasma whose chemically modified forms contribute to the progression of atherosclerosis and cardiovascular diseases accounting for a vast majority of deaths in westernized civilizations. For the development of new treatment strategies, it is important to have a detailed picture of LDL nanoparticles on a molecular basis. Through the combination of X-ray and neutron small-angle scattering (SAS) techniques with high hydrostatic pressure (HHP) this study describes structural features of normolipidemic, triglyceride-rich and oxidized forms of LDL. Due to the different scattering contrasts for X-rays and neutrons, information on the effects of HHP on the internal structure determined by lipid rearrangements and changes in particle shape becomes accessible. Independent pressure and temperature variations provoke a phase transition in the lipid core domain. With increasing pressure an inter-related anisotropic deformation and flattening of the particle are induced. All LDL nanoparticles maintain their structural integrity even at 3000 bar and show a reversible response toward pressure variations. The present work depicts the complementarity of pressure and temperature as independent thermodynamic parameters and introduces HHP as a tool to study molecular assembling and interaction processes in distinct lipoprotein particles in a nondestructive manner.

12.
Thromb Haemost ; 118(10): 1790-1802, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30235485

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare disease characterized by increased pulmonary pressure and vascular remodelling as a consequence of smooth muscle cell proliferation, endothelial cell dysfunction and inflammatory infiltrates. Meprin α is a metalloproteinase whose substrates include adhesion and cell-cell contact molecules involved in the process of immune cell extravasation. In this study, we aimed to unravel the role of meprin α in PAH-induced vascular remodelling. Our results showed that meprin α was present in the apical membrane of endothelial cells in the lungs and pulmonary arteries of donors and idiopathic PAH (IPAH) patients. Elevated circulating meprin α levels were detected in the plasma of IPAH patients. In vitro binding assays and electron microscopy confirmed binding of meprin α to the glycocalyx of human pulmonary artery endothelial cells (hPAECs). Enzymatic and genetic approaches identified heparan sulphate (HS) as an important determinant of the meprin α binding capacity to hPAEC. Meprin α treatment protected from excessive neutrophil infiltration and the protective effect observed in the presence of neutrophils was partially reversed by removal of HS from hPAEC. Importantly, HS levels in pulmonary arteries were decreased in IPAH patients and binding of meprin α to HS was impaired in IPAH hPAEC. In summary, our results suggest a role of HS in docking meprin α to the endothelium and thus in the modulation of inflammatory cell extravasation. In IPAH, the decreased endothelial HS results in the reduction of meprin α binding which might contribute to enhanced inflammatory cell extravasation and potentially to pathological vascular remodelling.


Subject(s)
Endothelium, Vascular/metabolism , Heparitin Sulfate/metabolism , Hypertension, Pulmonary/immunology , Inflammation/immunology , Lung/metabolism , Metalloendopeptidases/metabolism , Pulmonary Artery/pathology , Animals , Cells, Cultured , Endothelium, Vascular/pathology , Humans , Immune System Diseases , Leukocyte Disorders , Lung/pathology , Male , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Vascular Remodeling
13.
Nanotoxicology ; 12(2): 90-103, 2018 03.
Article in English | MEDLINE | ID: mdl-29334310

ABSTRACT

A thorough understanding of nanoparticle bio-distribution at the feto-maternal interface will be a prerequisite for their diagnostic or therapeutic application in women of childbearing age and for teratologic risk assessment. Therefore, the tissue interaction of biocompatible dendritic polyglycerol nanoparticles (dPG-NPs) with first- trimester human placental explants were analyzed and compared to less sophisticated trophoblast-cell based models. First-trimester human placental explants, BeWo cells and primary trophoblast cells from human term placenta were exposed to fluorescence labeled, ∼5 nm dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10 nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence microscopy. To assess the impact of dPG-NP on trophoblast integrity and endocrine function, LDH, and hCG releases were measured. A dose- and charge-dependent accumulation of dPG-NPs was observed at the early placental barrier and in cell lines, with positive dPG-NP-surface causing deposits even in the mesenchymal core of the placental villi. No signs of plasma membrane damage could be detected. After 24 h we observed a significant reduction of hCG secretion in placental explants, without significant changes in trophoblast apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP's surface charge substantially influences their bio-distribution at the feto-maternal interface, with positive charge facilitating trans-trophoblast passage, and in contrast to more artificial models, the first-trimester placental explant culture model reveals potentially hazardous influences of charged dPG-NPs on early placental physiology.


Subject(s)
Chorionic Gonadotropin/metabolism , Dendritic Cells/metabolism , Glycerol/pharmacology , Glycerol/pharmacokinetics , Nanoparticles/chemistry , Placenta/metabolism , Polymers/pharmacology , Polymers/pharmacokinetics , Apoptosis , Biological Availability , Cells, Cultured , Female , Glycerol/chemistry , Humans , Polymers/chemistry , Pregnancy , Pregnancy Trimester, First , Surface Properties , Trophoblasts/metabolism
14.
Nano Res ; 11(2): 913-928, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29372005

ABSTRACT

Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as biologically most relevant representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (V4D, V4WD, V4WD2, I4WD2) readily self-assembled into lamellae in aqueous solution: small-angle X-ray scattering patterns (SAXS) revealed ordered lamellar structures with a repeat distance of ~4-5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (V3D and V4D2) remained as loose aggregates dispersed in solution; one peptide (L4WD2) formed twisted tapes with internal lamellae and an antiparallel ß-type monomer alignment. To understand the interaction of peptides with lipids they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures: large multilamellar vesicles (d-spacing ~6.3 nm) coexisted with oligo- or unilamellar vesicles (~50 nm in diameter) and bicelle-like structures (~45 nm length, ~18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter ~260-280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs: at 25 °C the bilayer is in a fully interdigitated state (headgroup-to-headgroup distance dhh ~2.9 nm), whereas at 50 °C this interdigitation opens up (dhh ~3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures: subtle changes in the amino acid composition are key design elements in creating peptide- or lipid-peptide nanostructures with the same richness in morphology as known from the lipid-world.

15.
Biomacromolecules ; 17(11): 3591-3601, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27741400

ABSTRACT

Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide-membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide's inherent ability to form highly cohesive supramolecular structures.


Subject(s)
Membranes/chemistry , Peptides/chemistry , Surface-Active Agents/chemistry , Anions/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes/ultrastructure , Microscopy, Atomic Force , Models, Molecular , Nanostructures/chemistry , Peptides/chemical synthesis , Phospholipids/chemistry , Surface-Active Agents/chemical synthesis
16.
Nano Res ; 8(6): 1822-1833, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26290684

ABSTRACT

Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that offer an inspiration for the development of innovative materials in nanotechnology. Here we present the unique structure of a cone-shaped amphiphilic designer peptide. When tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at increased concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology the assemblies are integrated into a network with hydrogel characteristics. Such a peptide based structure holds promise for a building block of next-generation nanostructured biomaterials.

17.
J Am Chem Soc ; 133(34): 13213-5, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21790144

ABSTRACT

Apolipoprotein B100 (apoB100)-containing plasma lipoproteins (LDL and VLDL) supply tissues and cells with cholesterol and fat. During lipolytic conversion from VLDL to LDL the size and chemical composition of the particles change, but the apoB100 molecule remains bound to the lipids and regulates the receptor mediated uptake. The molecular physical parameters which control lipoprotein remodeling and enable particle stabilization by apoB100 are largely unknown. Here, we have compared the molecular dynamics and elasticities of VLDL and LDL derived by elastic neutron scattering temperature scans. We have determined thermal motions, dynamical transitions, and molecular fluctuations, which reflect the temperature-dependent motional coupling between lipid and protein. Our results revealed that lipoprotein particles are extremely soft and flexible. We found substantial differences in the molecular resiliences of lipoproteins, especially at higher temperatures. These discrepancies not only can be explained in terms of lipid composition and mobility but also suggest that apoB100 displays different dynamics dependent on the lipoprotein it is bound to. Hence, we suppose that the inherent conformational flexibility of apoB100 permits particle stabilization upon lipid exchange, whereas the dynamic coupling between protein and lipids might be a key determinant for lipoprotein conversion and atherogenicity.


Subject(s)
Lipoproteins, LDL/chemistry , Lipoproteins, VLDL/chemistry , Elasticity , Humans , Molecular Dynamics Simulation , Motion , Neutron Diffraction/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...